利用基于密度泛函理论(DFT)的第一性原理研究了O原子与Pd掺杂前后ZnO(0001)表面的相互作用机理。通过对模型表面六个高对称位吸附能的计算,发现O原子最有可能吸附于Pd掺杂表面的间隙位。从表面的态密度(density of states,DOS)及分波态...利用基于密度泛函理论(DFT)的第一性原理研究了O原子与Pd掺杂前后ZnO(0001)表面的相互作用机理。通过对模型表面六个高对称位吸附能的计算,发现O原子最有可能吸附于Pd掺杂表面的间隙位。从表面的态密度(density of states,DOS)及分波态密度(partial density of states,PDOS)分析结果可以看出,掺杂体系中费米能级附近出现的杂化峰是由O原子的p轨道电子和Pd原子的d轨道电子杂化引起的。掺杂表面的差分电荷密度反映出O原子与Pd原子之间存在大量电荷转移,说明掺入催化剂Pd有助于提高ZnO材料的气敏性能。最后,通过对挥发性有机化合物(VOC)气体的气敏测试验证了理论计算的结论。展开更多
文摘利用基于密度泛函理论(DFT)的第一性原理研究了O原子与Pd掺杂前后ZnO(0001)表面的相互作用机理。通过对模型表面六个高对称位吸附能的计算,发现O原子最有可能吸附于Pd掺杂表面的间隙位。从表面的态密度(density of states,DOS)及分波态密度(partial density of states,PDOS)分析结果可以看出,掺杂体系中费米能级附近出现的杂化峰是由O原子的p轨道电子和Pd原子的d轨道电子杂化引起的。掺杂表面的差分电荷密度反映出O原子与Pd原子之间存在大量电荷转移,说明掺入催化剂Pd有助于提高ZnO材料的气敏性能。最后,通过对挥发性有机化合物(VOC)气体的气敏测试验证了理论计算的结论。