Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elli...Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elliptic,and circular oxidation apertures which also have different sizes.We formed three different shape oxide apertures by wetoxidation with 36μm-39μm circular mesa.Our results show that triangular oxidized-VCSEL has the advantages of mode and polarization selection over elliptic and circular oxide apertures.When triangular oxide-confined VCSELs emit in single mode,the measured side mode suppression ratio(SMSR)is larger than 20 d B and orthogonal polarization suppression ratio achieves 10 d B.Resonant blueshift of VCSELs with triangular and elliptic apertures is observed with the decrease of aperture size.展开更多
文摘Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elliptic,and circular oxidation apertures which also have different sizes.We formed three different shape oxide apertures by wetoxidation with 36μm-39μm circular mesa.Our results show that triangular oxidized-VCSEL has the advantages of mode and polarization selection over elliptic and circular oxide apertures.When triangular oxide-confined VCSELs emit in single mode,the measured side mode suppression ratio(SMSR)is larger than 20 d B and orthogonal polarization suppression ratio achieves 10 d B.Resonant blueshift of VCSELs with triangular and elliptic apertures is observed with the decrease of aperture size.