针对相干信号受到非均匀噪声的干扰,在低信噪比环境中常规DOA估计存在估计效果较差甚至失效的情况,基于改进加权空间平滑,提出一种使用凸优化构造最优权重矩阵的方法。改进加权空间平滑算法解相干的同时构造权重矩阵,再用凸优化重构无...针对相干信号受到非均匀噪声的干扰,在低信噪比环境中常规DOA估计存在估计效果较差甚至失效的情况,基于改进加权空间平滑,提出一种使用凸优化构造最优权重矩阵的方法。改进加权空间平滑算法解相干的同时构造权重矩阵,再用凸优化重构无噪声权重矩阵,将平滑过的协方差矩阵加权,并用MUSIC算法进行DOA估计。仿真结果证实,所提方法相对于空间平滑(spatial smoothing,SS)、基于特征空间MUSIC的空间平滑估计(spatial smoothing and eigen space based MUSIC,SS-ESMUSIC)以及接收信号协方差矩阵秩最小化(spatial smoothing based covariance rank minimization,SS-CRM)算法能更好地抑制非均匀噪声和解相干,且减少了低信噪比的干扰,展现出更优良的分辨力和准确性。展开更多
文摘针对相干信号受到非均匀噪声的干扰,在低信噪比环境中常规DOA估计存在估计效果较差甚至失效的情况,基于改进加权空间平滑,提出一种使用凸优化构造最优权重矩阵的方法。改进加权空间平滑算法解相干的同时构造权重矩阵,再用凸优化重构无噪声权重矩阵,将平滑过的协方差矩阵加权,并用MUSIC算法进行DOA估计。仿真结果证实,所提方法相对于空间平滑(spatial smoothing,SS)、基于特征空间MUSIC的空间平滑估计(spatial smoothing and eigen space based MUSIC,SS-ESMUSIC)以及接收信号协方差矩阵秩最小化(spatial smoothing based covariance rank minimization,SS-CRM)算法能更好地抑制非均匀噪声和解相干,且减少了低信噪比的干扰,展现出更优良的分辨力和准确性。