柔性的电池构型很大程度上取决于电极结构设计的独特性,即在动力载荷下精确控制电极结构稳定性、成分兼容性与形状一致性。在本研究中,作者开发了在炭布上负载的四元氧化物纳米晶的同轴阵列柔性负极(CC@FeNiMnO_(4)-600),并进一步借助...柔性的电池构型很大程度上取决于电极结构设计的独特性,即在动力载荷下精确控制电极结构稳定性、成分兼容性与形状一致性。在本研究中,作者开发了在炭布上负载的四元氧化物纳米晶的同轴阵列柔性负极(CC@FeNiMnO_(4)-600),并进一步借助负极设计中准凝胶三元共聚物来有效调控同轴阵列表面包覆的N掺杂炭涂层。恒流充放电研究表明,CC@FeNiMnO_(4)-600负极表现出~1.40 mAh cm^(−2)的高面积容量和良好的循环效率(1 mA cm^(−2))。将柔性负极与少层氮化硼改性聚环氧乙烷固体电解质相匹配,所构建的柔性器件也同时展现出良好的界面电化学相容性和柔韧性。这种优异的性能得益于上述柔性负极各组分的协同效应,即有效平衡了四元氧化物高活性储能位点与柔韧的同轴结构;此外,紧密的PEO//负极界面结合能够实现良好、连续的离子传输,本工作有望促进固态原型在可穿戴电子设备中的实际应用。展开更多
文摘柔性的电池构型很大程度上取决于电极结构设计的独特性,即在动力载荷下精确控制电极结构稳定性、成分兼容性与形状一致性。在本研究中,作者开发了在炭布上负载的四元氧化物纳米晶的同轴阵列柔性负极(CC@FeNiMnO_(4)-600),并进一步借助负极设计中准凝胶三元共聚物来有效调控同轴阵列表面包覆的N掺杂炭涂层。恒流充放电研究表明,CC@FeNiMnO_(4)-600负极表现出~1.40 mAh cm^(−2)的高面积容量和良好的循环效率(1 mA cm^(−2))。将柔性负极与少层氮化硼改性聚环氧乙烷固体电解质相匹配,所构建的柔性器件也同时展现出良好的界面电化学相容性和柔韧性。这种优异的性能得益于上述柔性负极各组分的协同效应,即有效平衡了四元氧化物高活性储能位点与柔韧的同轴结构;此外,紧密的PEO//负极界面结合能够实现良好、连续的离子传输,本工作有望促进固态原型在可穿戴电子设备中的实际应用。