星载微波散射计是获取全球海面风场信息的主要手段,HY-2B卫星散射计的成功发射为全球海面风场数据获取的持续性提供了重要保障。本文利用欧洲中期天气预报中心(EuropeanCenter forMedium-RangeWeatherForecasts,ECMWF)再分析风场数据、...星载微波散射计是获取全球海面风场信息的主要手段,HY-2B卫星散射计的成功发射为全球海面风场数据获取的持续性提供了重要保障。本文利用欧洲中期天气预报中心(EuropeanCenter forMedium-RangeWeatherForecasts,ECMWF)再分析风场数据、热带大气海洋观测计划(TropicalAtmosphereOceanArray,TAO)和美国国家数据浮标中心(National Data Buoy Center,NDBC)浮标获取的海面风矢量实测数据,对HY-2B散射计海面风场数据产品的质量进行统计分析。分析表明,HY-2B风场与ECMWF再分析风场对比,在4~24m·s^-1风速区间内,风速和风向均方根误差(root mean squareerror,RMSE)分别为1.58m·s^-1和15.34°;与位于开阔海域的TAO浮标数据对比,风速、风向RMSE分别为1.03m·s^-1和14.98°,可见HY-2B风场能较好地满足业务化应用的精度要求(风速优于2m·s^-1,风向优于20°)。与主要位于近海海域的NDBC浮标对比,HY-2B风场的风速、风向RMSE分别为1.60m·s^-1和19.14°,说明HY-2B散射计同时具备了对近海海域风场的良好观测能力。本文还发现HY-2B风场质量会随风速、地面交轨位置等变化,为用户更好地使用HY-2B风场产品提供参考。展开更多
This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a...This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.展开更多
Since January 2012,the National Satellite Ocean Application Service has released operational wind products from the HY-2A scatterometer(HY2-SCAT),using the maximum-likelihood estimation(MLE) method with a median filte...Since January 2012,the National Satellite Ocean Application Service has released operational wind products from the HY-2A scatterometer(HY2-SCAT),using the maximum-likelihood estimation(MLE) method with a median filter. However,the quality of the winds retrieved from HY2-SCAT depends on the sub-satellite cross-track location,and poor azimuth separation in the nadir region causes particularly low-quality wind products in this region. However,an improved scheme,i.e.,a multiple solution scheme(MSS) with a two-dimensional variational analysis method(2DVAR),has been proposed by the Royal Netherlands Meteorological Institute to overcome such problems. The present study used the MSS in combination with a 2DVAR technique to retrieve wind data from HY2-SCAT observations. The parameter of the empirical probability function,used to indicate the probability of each ambiguous solution being the "true" wind,was estimated based on HY2-SCAT data,and the 2DVAR method used to remove ambiguity in the wind direction. A comparison between MSS and ECMWF winds showed larger deviations at both low wind speeds(below 4 m/s) and high wind speeds(above 17 m/s),whereas the wind direction exhibited lower bias and good stability,even at high wind speeds greater than 24 m/s. The two HY2-SCAT wind data sets,retrieved by the standard MLE and the MSS procedures were compared with buoy observations. The RMS error of wind speed and direction were 1.3 m/s and 17.4°,and 1.3 m/s and 24.0° for the MSS and MLE wind data,respectively,indicating that MSS wind data had better agreement with the buoy data. Furthermore,the distributions of wind fields for a case study of typhoon Soulik were compared,which showed that MSS winds were spatially more consistent and meteorologically better balanced than MLE winds.展开更多
文摘星载微波散射计是获取全球海面风场信息的主要手段,HY-2B卫星散射计的成功发射为全球海面风场数据获取的持续性提供了重要保障。本文利用欧洲中期天气预报中心(EuropeanCenter forMedium-RangeWeatherForecasts,ECMWF)再分析风场数据、热带大气海洋观测计划(TropicalAtmosphereOceanArray,TAO)和美国国家数据浮标中心(National Data Buoy Center,NDBC)浮标获取的海面风矢量实测数据,对HY-2B散射计海面风场数据产品的质量进行统计分析。分析表明,HY-2B风场与ECMWF再分析风场对比,在4~24m·s^-1风速区间内,风速和风向均方根误差(root mean squareerror,RMSE)分别为1.58m·s^-1和15.34°;与位于开阔海域的TAO浮标数据对比,风速、风向RMSE分别为1.03m·s^-1和14.98°,可见HY-2B风场能较好地满足业务化应用的精度要求(风速优于2m·s^-1,风向优于20°)。与主要位于近海海域的NDBC浮标对比,HY-2B风场的风速、风向RMSE分别为1.60m·s^-1和19.14°,说明HY-2B散射计同时具备了对近海海域风场的良好观测能力。本文还发现HY-2B风场质量会随风速、地面交轨位置等变化,为用户更好地使用HY-2B风场产品提供参考。
基金Supported by the National Natural Science Foundation of China(No.41106152)the National Science and Technology Support Program of China(No.2013BAD13B01)+3 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the International Science&Technology Cooperation Program of China(No.2011DFA22260)the National High Technology Industrialization Project(No.[2012]2083)the Marine Public Projects of China(Nos.201105032,201305032,201105002-07)
文摘This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the Shandong Joint Fund for Marine Science Research Centers(No.U1406404)+1 种基金the National Natural Science Foundation of China(No.41106152)he National Key Technology R&D Program of China(No.2013BAD13B01)
文摘Since January 2012,the National Satellite Ocean Application Service has released operational wind products from the HY-2A scatterometer(HY2-SCAT),using the maximum-likelihood estimation(MLE) method with a median filter. However,the quality of the winds retrieved from HY2-SCAT depends on the sub-satellite cross-track location,and poor azimuth separation in the nadir region causes particularly low-quality wind products in this region. However,an improved scheme,i.e.,a multiple solution scheme(MSS) with a two-dimensional variational analysis method(2DVAR),has been proposed by the Royal Netherlands Meteorological Institute to overcome such problems. The present study used the MSS in combination with a 2DVAR technique to retrieve wind data from HY2-SCAT observations. The parameter of the empirical probability function,used to indicate the probability of each ambiguous solution being the "true" wind,was estimated based on HY2-SCAT data,and the 2DVAR method used to remove ambiguity in the wind direction. A comparison between MSS and ECMWF winds showed larger deviations at both low wind speeds(below 4 m/s) and high wind speeds(above 17 m/s),whereas the wind direction exhibited lower bias and good stability,even at high wind speeds greater than 24 m/s. The two HY2-SCAT wind data sets,retrieved by the standard MLE and the MSS procedures were compared with buoy observations. The RMS error of wind speed and direction were 1.3 m/s and 17.4°,and 1.3 m/s and 24.0° for the MSS and MLE wind data,respectively,indicating that MSS wind data had better agreement with the buoy data. Furthermore,the distributions of wind fields for a case study of typhoon Soulik were compared,which showed that MSS winds were spatially more consistent and meteorologically better balanced than MLE winds.