Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f...Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.展开更多
Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial...Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.展开更多
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule ...Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.展开更多
Two kinds of forest-like and desert-like patterns are formed by thermal evaporation of 4-dicyanovinyl-N, Ndimethylamino-1-naphthalene (DDAN) onto SiO2 substrates. Based on thermal kinetics of the molecules on the su...Two kinds of forest-like and desert-like patterns are formed by thermal evaporation of 4-dicyanovinyl-N, Ndimethylamino-1-naphthalene (DDAN) onto SiO2 substrates. Based on thermal kinetics of the molecules on the substrate the transformation between the forest and desert patterns is due to two factors. The first one is the diffusion length, which is related to the deposition rate, the diffusion potential energy barrier and the substrate temperature. The second one is the strong interaction between the two polarity chemical groups of the molecules, which is beneficial to the formation of branches. Totally different patterns are also found on mica substrates, and are attributed to the anisotropic diffusion and the stronger interaction between DDAN molecules and the mica surface.展开更多
We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling...We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling microscope(STM) and low electron energy diffraction(LEED), we investigate the atomic structure of the samples.The STM images and the LEED pattern show that monolayer AgTe crystal is formed on Ag(111). Four kinds of atomic structures of AgTe and Ag(111) are observed:(i) flat honeycomb structure,(ii) bulked honeycomb,(iii)stripe structure,(iv) hexagonal structure. The structural analysis indicates that the formation of the different atomic structures is due to the lattice mismatch and relief of the intrinsic strain in the AgTe layer. Our results provide a simple and convenient method to produce monolayer AgTe atomic crystal on Ag(111) and a template for study of novel physical properties and for future quantum devices.展开更多
We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope(4P...We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope(4P-STM). The gate-tunable conductivity and mobility are extracted from standard van der Pauw resistance measurements where the four STM probes contact the four peripheries of hexagonal graphene flakes, respectively. The high homogeneity of transport properties of the single-crystalline graphene flake is confirmed by comparing the extracted conductivities and mobilities from three setups with different geometry factors. Our studies provide a reliable solution for directly evaluating the entire electrical properties of graphene in a non-invasive way and could be extended to characterizing other two-dimensional materials.展开更多
Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with ...Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with density functional theory(DFT) based calculations. With the deposition of monolayer DAT molecules on Au(110) and subsequent annealing at 100℃, all DAT molecules adsorb on a(1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200℃, STM images show three distinct domains, including DAT molecules on a(1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group(–2H-DAT) on a(1×5)reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups(–4HDAT) on a(1×3) reconstructed surface through N–Au bonds. Furthermore, after annealing the sample to 350℃, STM image shows only one self-assembled structure with –4H-DAT molecules on a(1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a(1×5) reconstructed surface is lower than that on(1×3) one, which demonstrate the experimental results that the formation temperature of a(1×3) reconstructed surface is higher than that of a(1×5) one.展开更多
Adsorption behavior of Fe atoms on a metal-free naphthalocyanine(H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional th...Adsorption behavior of Fe atoms on a metal-free naphthalocyanine(H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory(DFT)based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe–H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe–H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe–H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.展开更多
Bulk iridium ditelluride(IrTe2)is a layered material and is known for its interesting electronic and structural properties,such as large spin-orbit coupling,charge ordering,and superconductivity.However,so far there i...Bulk iridium ditelluride(IrTe2)is a layered material and is known for its interesting electronic and structural properties,such as large spin-orbit coupling,charge ordering,and superconductivity.However,so far there is no experimental study about the fabrication of monolayer IrTe2.Here we report the formation of IrTe2 monolayer on Ir(111)substrate by direct tellurization method.Scanning tunneling microscope(STM)images show the coexistence of 1/5 phase and 1/6 phase structures of IrTe2 at room temperature.We also obtained STM images showing distorted stripe feature under low temperatures.This stripe feature is possibly induced by the strain between the IrTe2 monolayer and the metal substrate.Density functional theory(DFT)calculations show that the IrTe2 monolayer has strong interaction with the underlying Ir(111)substrate.展开更多
Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here...Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here,employing ionic liquid gating,a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ(PCO)films,based on two distinct mechanisms.Firstly,with positive electric fields,the film can be reversibly switched between superconducting and non-superconducting states,attributed to the carrier doping effect.Secondly,the film becomes more resistive by applying negative bias voltage up to-4V,but strikingly,a non-volatile superconductivity is achieved once the gate voltage is removed.Such phenomenon represents a distinctive route of manipulating superconductivity in PCO,resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments.The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics,as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tcsuperconductors.展开更多
基金Project supported by the National Science Fund for Distinguished Young Scholars(Grant No.T2125014)the Special Fund for Research on National Major Research Instruments of the National Natural Science Foundation of China(Grant No.11927808)the CAS Key Technology Research and Development Team Project(Grant No.GJJSTD20200005)。
文摘Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering.
基金supported by the National Natural Science Foundation of China(Grant Nos.61888102 and 12374199)the National Key Research&Development Projects of China(Grant Nos.2022YFA1204100,2019YFA0308501,and 2021YFA1401300)+1 种基金the Chinese Academy of Sciences(Grant No.XDB33030100)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Moirésuperlattices in twisted two-dimensional materials have emerged as ideal platforms for engineering quantum phenomena,which are highly sensitive to twist angles,including both the global value and the spatial inhomogeneity.However,only a few methods provide spatial-resolved information for characterizing local twist angle distribution.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774176)the National Basic Research Program of China(Grant No.2006CB806202)
文摘Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.
基金Supported by the National Natural Science Foundation of China under Grant No 90406022. the Hi-Tech Research and Development Programme of China under Grant No 2004AA302G11, and the National Basic Research Programme of China under Grant No 2006CB921305.
文摘Two kinds of forest-like and desert-like patterns are formed by thermal evaporation of 4-dicyanovinyl-N, Ndimethylamino-1-naphthalene (DDAN) onto SiO2 substrates. Based on thermal kinetics of the molecules on the substrate the transformation between the forest and desert patterns is due to two factors. The first one is the diffusion length, which is related to the deposition rate, the diffusion potential energy barrier and the substrate temperature. The second one is the strong interaction between the two polarity chemical groups of the molecules, which is beneficial to the formation of branches. Totally different patterns are also found on mica substrates, and are attributed to the anisotropic diffusion and the stronger interaction between DDAN molecules and the mica surface.
基金Supported by the National Key Research&Development Projects of China under Grant Nos 2016YFA0202300 and 2018FYA0305800the National Natural Science Foundation of China under Grant Nos 61390501,61474141 and 11604373+1 种基金the CAS Pioneer Hundred Talents Programthe Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB28000000
文摘We report on the formation of two-dimensional monolayer AgTe crystal on Ag(111) substrates. The samples are prepared in ultrahigh vacuum by deposition of Te on Ag(111) followed by annealing. Using a scanning tunneling microscope(STM) and low electron energy diffraction(LEED), we investigate the atomic structure of the samples.The STM images and the LEED pattern show that monolayer AgTe crystal is formed on Ag(111). Four kinds of atomic structures of AgTe and Ag(111) are observed:(i) flat honeycomb structure,(ii) bulked honeycomb,(iii)stripe structure,(iv) hexagonal structure. The structural analysis indicates that the formation of the different atomic structures is due to the lattice mismatch and relief of the intrinsic strain in the AgTe layer. Our results provide a simple and convenient method to produce monolayer AgTe atomic crystal on Ag(111) and a template for study of novel physical properties and for future quantum devices.
基金supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2013CBA01600)the National Key Research&Development Project of China(Grant No.2016YFA0202300)+1 种基金the National Natural Science Foundation of China(Grant Nos.61474141,61674170,61335006,61390501,51325204,and 51210003)the Chinese Academy of Sciences(CAS) and Youth Innovation Promotion Association of CAS(Grant No.20150005)
文摘We report the direct measurements of conductivity and mobility in millimeter-sized single-crystalline graphene on SiO2/Si via van der Pauw geometry by using a home-designed four-probe scanning tunneling microscope(4P-STM). The gate-tunable conductivity and mobility are extracted from standard van der Pauw resistance measurements where the four STM probes contact the four peripheries of hexagonal graphene flakes, respectively. The high homogeneity of transport properties of the single-crystalline graphene flake is confirmed by comparing the extracted conductivities and mobilities from three setups with different geometry factors. Our studies provide a reliable solution for directly evaluating the entire electrical properties of graphene in a non-invasive way and could be extended to characterizing other two-dimensional materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.61390501,61471337,61622116,and 51325204)the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ1203451)+1 种基金the CAS Hundred Talents Program,the Transregional Collaborative Research Center TRR 61(Grant No.21661132006)the National Supercomputing Center in Tianjin.A portion of the research was performed in CAS Key Laboratory of Vacuum Physics
文摘Here we report the thermo-controllable self-assembled structures of single-layer 4, 4''-diamino-p-terphenyl(DAT)molecules on Au(110), which are investigated by scanning tunneling microscopy(STM) combined with density functional theory(DFT) based calculations. With the deposition of monolayer DAT molecules on Au(110) and subsequent annealing at 100℃, all DAT molecules adsorb on a(1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200℃, STM images show three distinct domains, including DAT molecules on a(1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group(–2H-DAT) on a(1×5)reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups(–4HDAT) on a(1×3) reconstructed surface through N–Au bonds. Furthermore, after annealing the sample to 350℃, STM image shows only one self-assembled structure with –4H-DAT molecules on a(1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a(1×5) reconstructed surface is lower than that on(1×3) one, which demonstrate the experimental results that the formation temperature of a(1×3) reconstructed surface is higher than that of a(1×5) one.
基金supported by the National Natural Science Foundation of China(Grant Nos.61390501,51325204,and 11204361)the National Basic Research Program of China(Grant Nos.2011CB808401 and 2011CB921702)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ1203451)the National Supercomputing Center in Tianjin,China,and the Chinese Academy of Sciences
文摘Adsorption behavior of Fe atoms on a metal-free naphthalocyanine(H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory(DFT)based calculations. We found that the Fe atoms were adsorbed on the centers of H2Nc molecules and formed Fe–H2Nc complexes at low coverage. DFT calculations show that Fe sited in the center of the molecule is the most stable configuration, in good agreement with the experimental observations. After an Fe–H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe–H2Nc complex monolayer. Therefore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.
基金Project supported by the National Key Research&Development Project of China(Grant Nos.2019YFA0308500,2018YFA0305800,and 2016YFA0202300)the National Natural Science Foundation of China(Grant Nos.51991340,61888102,and 11888101)the Chinese Academy of Sciences(Grant Nos.XDB28000000 and XDB30000000).
文摘Bulk iridium ditelluride(IrTe2)is a layered material and is known for its interesting electronic and structural properties,such as large spin-orbit coupling,charge ordering,and superconductivity.However,so far there is no experimental study about the fabrication of monolayer IrTe2.Here we report the formation of IrTe2 monolayer on Ir(111)substrate by direct tellurization method.Scanning tunneling microscope(STM)images show the coexistence of 1/5 phase and 1/6 phase structures of IrTe2 at room temperature.We also obtained STM images showing distorted stripe feature under low temperatures.This stripe feature is possibly induced by the strain between the IrTe2 monolayer and the metal substrate.Density functional theory(DFT)calculations show that the IrTe2 monolayer has strong interaction with the underlying Ir(111)substrate.
基金supported by the National Key Basic Research Program of China(2015CB921000,2016YFA0300301,2017YFA0302902,2017YFA0303003 and 2018YFB0704102)the National Natural Science Foundation of China(11674374 and 11834016)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB25000000)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-SLH008 and QYZDY-SSW-SLH001)CAS Interdisciplinary Innovation Teambenefited from the bilateral collaboration F.R.S.-FNRS/NSFC(V4/345-DeM-229)。
文摘Manipulating the superconducting states of high transition temperature(high-Tc)cuprate superconductors in an efficient and reliable way is of great importance for their applications in next-generation electronics.Here,employing ionic liquid gating,a selective control of volatile and non-volatile superconductivity is achieved in pristine insulating Pr2CuO4±δ(PCO)films,based on two distinct mechanisms.Firstly,with positive electric fields,the film can be reversibly switched between superconducting and non-superconducting states,attributed to the carrier doping effect.Secondly,the film becomes more resistive by applying negative bias voltage up to-4V,but strikingly,a non-volatile superconductivity is achieved once the gate voltage is removed.Such phenomenon represents a distinctive route of manipulating superconductivity in PCO,resulting from the doping healing of oxygen vacancies in copper-oxygen planes as unravelled by high-resolution scanning transmission electron microscope and in situ X-ray diffraction experiments.The effective manipulation of volatile/non-volatile superconductivity in the same parent cuprate brings more functionalities to superconducting electronics,as well as supplies flexible samples for investigating the nature of quantum phase transitions in high-Tcsuperconductors.