针对人工目测的传统方法在进行米粒裂纹检验时存在主观性及随意性较大、效率较低、可重复性较差等缺点,在分析大米裂纹光学特征的基础上,在V isua l C++6.0环境下开发了一套大米裂纹计算机识别系统,通过图像二值化、区域标记等方法从原...针对人工目测的传统方法在进行米粒裂纹检验时存在主观性及随意性较大、效率较低、可重复性较差等缺点,在分析大米裂纹光学特征的基础上,在V isua l C++6.0环境下开发了一套大米裂纹计算机识别系统,通过图像二值化、区域标记等方法从原始图像中提取单体米粒图像,并对提取出的单体米粒图像进行灰度拉伸变换处理以突出米粒裂纹特征,然后提取单体米粒的行灰度均值变化曲线,并对曲线进行加权滤波处理,提出了一种基于单体裂纹米粒图像行灰度均值变化特征的大米裂纹检测算法。运用该算法对从金优974、菲优600、冈优182、中优205、89-94等5类大米品种中各选取的6组特殊类样品和5组随机样品进行裂纹检测。试验结果表明,该系统对特殊类大米样品和随机大米样品裂纹率的判断准确率分别为98.37%和97.88%,为进一步完善大米品质的计算机视觉检测提供了理论和实践基础。展开更多
文摘针对人工目测的传统方法在进行米粒裂纹检验时存在主观性及随意性较大、效率较低、可重复性较差等缺点,在分析大米裂纹光学特征的基础上,在V isua l C++6.0环境下开发了一套大米裂纹计算机识别系统,通过图像二值化、区域标记等方法从原始图像中提取单体米粒图像,并对提取出的单体米粒图像进行灰度拉伸变换处理以突出米粒裂纹特征,然后提取单体米粒的行灰度均值变化曲线,并对曲线进行加权滤波处理,提出了一种基于单体裂纹米粒图像行灰度均值变化特征的大米裂纹检测算法。运用该算法对从金优974、菲优600、冈优182、中优205、89-94等5类大米品种中各选取的6组特殊类样品和5组随机样品进行裂纹检测。试验结果表明,该系统对特殊类大米样品和随机大米样品裂纹率的判断准确率分别为98.37%和97.88%,为进一步完善大米品质的计算机视觉检测提供了理论和实践基础。