期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于人工智能投票算法建立识别血清钠离子随机误差的实时质量控制法
1
作者 刘园 郑和翔 +3 位作者 徐志晔 陈文琴 宋宏岩 陈雨欣 《临床检验杂志》 CAS 2024年第10期772-777,共6页
目的利用人工智能投票(voting)算法,建立一种快速识别血清钠离子随机误差的实时质量控制新方法,并评价在此基础上构建模型的相关效能。方法采用回顾性调查研究方法,通过南京鼓楼医院医学检验科实验室信息系统导出2021年1月至5月在Beckma... 目的利用人工智能投票(voting)算法,建立一种快速识别血清钠离子随机误差的实时质量控制新方法,并评价在此基础上构建模型的相关效能。方法采用回顾性调查研究方法,通过南京鼓楼医院医学检验科实验室信息系统导出2021年1月至5月在BeckmanAU5400生化分析仪上检测的住院患者的血清钠离子结果,共计144754条,作为本研究的无偏数据。人为引入随机误差,生成相应有偏数据。随后,根据投票算法的原理建立质量控制方法(ViQC)模型。针对每种偏差,用ViQC模型与5种传统PBRTQC算法进行测试,利用分类模型评估指标评价ViQC模型的分析性能。绘制偏差检测曲线,采用误差检出所需对称修剪平均样本数(tANPed)来评价模型的临床检测效能,并与5种传统PBRTQC算法进行比较。结果ViQC模型对所有偏差检测的假阳性率均小于0.002,准确度大于0.951。当误差因子为1.5、2.5和3.0时,ViQC模型假阳性率均为0;当误差因子为2.5时,该模型的准确度高达0.979。与5种传统PBRTQC算法相比,ViQC模型对所有偏差检测的平均tANPed最多下降34%,误差检测敏感度更高。此外,ViQC模型在测试环节TEa定值偏差下的ROC曲线下面积高达0.989,tANPed仅为5。结论成功建立了基于人工智能算法的患者数据实时质量控制模型,其临床检测效能优于传统PBRTQC算法。 展开更多
关键词 质量控制 患者数据 实时质控 随机误差 人工智能
下载PDF
A novel complex-high-order graph convolutional network paradigm:ChyGCN
2
作者 郑和翔 苗书宇 顾长贵 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期665-672,共8页
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t... In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures. 展开更多
关键词 raph convolutional network complex modeling complex hypergraph
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部