期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
融合二连通模体结构信息的节点分类算法
1
作者 郑文萍 葛慧琳 +1 位作者 刘美麟 杨贵 《计算机应用》 CSCD 北大核心 2024年第5期1464-1470,共7页
节点表示学习将图结构数据信息编码到低维的潜在空间中,在节点分类、聚类、链路预测等机器学习任务中被广泛应用。在复杂网络中,节点与节点之间不仅存在直接相连的低阶结构,也存在以特殊连接模式形成的高阶结构,称为模体。提出一种融合... 节点表示学习将图结构数据信息编码到低维的潜在空间中,在节点分类、聚类、链路预测等机器学习任务中被广泛应用。在复杂网络中,节点与节点之间不仅存在直接相连的低阶结构,也存在以特殊连接模式形成的高阶结构,称为模体。提出一种融合二连通模体结构信息的节点分类算法(FMI),利用节点间高阶二连通模体信息学习节点表示,完成节点分类任务。首先,统计网络中的二连通模体,利用其中信息提出一个节点重要性的度量指标——模体比值。根据模体比值计算采样概率进行邻域采样;构造一个带权辅助图以融合网络节点连接的低阶关系与高阶关系,对节点进行加权邻域聚合以得到节点表示。在5个数据集Cora、Citeseer、Pubmed、Wiki和DBLP上执行节点分类任务,与5种经典基准算法进行对比,所提算法FMI在准确度和F1-分数等指标上表现良好。 展开更多
关键词 节点表示 二连通模体 邻域采样 邻域聚合 节点分类
下载PDF
基于节点聚类复杂度的图聚类方法
2
作者 郑文萍 王富民 +1 位作者 刘美麟 杨贵 《计算机科学》 CSCD 北大核心 2023年第11期77-87,共11页
图聚类可以发现网络中的社区结构,是复杂网络分析中的一项重要任务。针对不同节点的聚类难度各异的问题,提出了一种基于节点聚类复杂度的图聚类算法(Graph Clustering Algorithm Based on Node Clustering Complexity,GCNCC),用于判断... 图聚类可以发现网络中的社区结构,是复杂网络分析中的一项重要任务。针对不同节点的聚类难度各异的问题,提出了一种基于节点聚类复杂度的图聚类算法(Graph Clustering Algorithm Based on Node Clustering Complexity,GCNCC),用于判断节点的聚类复杂度,为聚类复杂度低的节点赋予伪标签,利用伪标签提供的监督信息降低其他节点的聚类复杂度,进而得到网络聚类结果。GCNCC包括节点表示、节点聚类复杂度判别和图聚类3个主要模块。节点表示模块得到保持网络集聚性的表示;节点聚类复杂度判别模块用于判断网络中的低聚类复杂度节点,并利用低聚类复杂度节点的伪标签信息来优化更新网络中其他节点的聚类复杂度;图聚类模块采用标签传播方法,将低聚类复杂度节点标签传播给高聚类复杂度节点,以得到聚类结果。在3个真实的引文网络和3个生物数据集上与9种经典算法进行对比,算法GCNCC在ACC,NMI,ARI和F1等方面均表现良好。 展开更多
关键词 图聚类 节点聚类复杂度 网络嵌入 自监督
下载PDF
国有林场森林碳汇试点建设浅析
3
作者 郑文萍 马玉灵 《山西林业》 2024年第S02期6-7,共2页
在全球气候加速变化、自然灾害增多增强的背景下,我国积极行动,制定了碳达峰和碳中和目标,对国有林场进行森林碳汇试点建设作了简要分析,探讨实施步骤及可行性,并提出几点建议。
关键词 国有林场 森林碳汇
下载PDF
一种基于节点间路径度量的图聚类算法 被引量:6
4
作者 郑文萍 车晨浩 +2 位作者 钱宇华 王杰 杨贵 《计算机学报》 EI CSCD 北大核心 2020年第7期1312-1327,共16页
图聚类算法可以用于发现社会网络中的社区结构、蛋白质互作用网络中的功能模块等,是当前复杂网络研究的热点之一.对网络中节点的相似性和簇发现结果进行合理度量是核心问题.针对此问题,给出了一种基于节点间点不重复路径度量的节点相似... 图聚类算法可以用于发现社会网络中的社区结构、蛋白质互作用网络中的功能模块等,是当前复杂网络研究的热点之一.对网络中节点的相似性和簇发现结果进行合理度量是核心问题.针对此问题,给出了一种基于节点间点不重复路径度量的节点相似性指标.以此为基础提出了一种面向复杂网络的基于“中心-扩展”策略的图聚类算法(A Graph Clustering Algorithm Based on Local Paths between Nodes in Complex Networks,PGC),包括节点相似性计算、中心节点选择、初始簇划分和簇优化四个主要过程.采用点不重复路径对节点相似性进行度量,消除了由大度节点引起较多的点重复路径对节点相似性的影响,提高了算法对大度节点邻域中节点的划分能力.通过与一些经典算法在11个真实网络、22个人工网络数据集上的实验比较分析,结果表明算法PGC在标准互信息、调整兰德系数、F度量、准确度等方面均表现出良好的性能. 展开更多
关键词 复杂网络 图聚类 簇结构 相似性度量 连通性
下载PDF
一种基于局部中心性的网络关键节点识别算法 被引量:16
5
作者 郑文萍 吴志康 杨贵 《计算机研究与发展》 EI CSCD 北大核心 2019年第9期1872-1880,共9页
关键节点识别已经成为分析与理解复杂网络特性、结构、功能的有效方式.提出了一种基于节点中心性的关键节点识别算法框架(greedy algorithm for critical node problem, GCNP),根据某种中心性指标选择一个网络的初始点覆盖集;从网络中... 关键节点识别已经成为分析与理解复杂网络特性、结构、功能的有效方式.提出了一种基于节点中心性的关键节点识别算法框架(greedy algorithm for critical node problem, GCNP),根据某种中心性指标选择一个网络的初始点覆盖集;从网络中删除该点覆盖集,迭代选择点覆盖集中使原网络连通节点对增加最小的节点向原网络回添,直至点覆盖集中节点满足用户给定的待删除关键节点数.为了更好地选择初始的节点覆盖集,提出了一种基于局部拓扑信息的节点中心性度量指标(local neighbor centrality, LNC).在16个人工网络和9个真实网络上的实验结果表明:与单独使用各中心性指标相比,采用GCNP算法框架可以提高算法性能.此外,所提的节点中心性度量指标LNC较度中心性(degree centrality, DC)、LocalRank中心性、K壳中心性(K-Shell, KS)、局部度和中心性(local degree sum centrality, LDS)能更准确地评估节点的重要性. 展开更多
关键词 关键节点 复杂网络 网络连通性 点覆盖集 局部中心性
下载PDF
基于稠密子图的社区发现算法 被引量:4
6
作者 郑文萍 张浩杰 王杰 《智能系统学报》 CSCD 北大核心 2016年第3期426-432,共7页
基于密度的图聚类算法在社区发现中得到了广泛应用,然而由于其通过搜索网络中局部稠密子图来识别社区,使得大量结点因不能构成稠密子图而未被聚类。针对此问题,给出了一种基于稠密子图的软聚类算法(community detection based dense sub... 基于密度的图聚类算法在社区发现中得到了广泛应用,然而由于其通过搜索网络中局部稠密子图来识别社区,使得大量结点因不能构成稠密子图而未被聚类。针对此问题,给出了一种基于稠密子图的软聚类算法(community detection based dense subgraphs,BDSG)。首先给出一种中心社区发现方法;进而定义了一种结点的社区归属度,并给出中心社区扩展策略;最终得到聚类结果。通过与CPM(clique percolation method)、k-dense算法在空手道俱乐部、海豚社交网络、大学生足球网络、电子邮件网络和合作网络等数据进行比较,表明BDSG算法在模块性指标与时间效率方面体现了良好性能,同时中心社区扩展策略能在一定程度上提高CPM、k-dense等基于密度算法的聚类有效性。 展开更多
关键词 复杂网络 社区发现 图聚类 软聚类 密度 中心扩展策略 点介数 模块性
下载PDF
基于遗传算法的蛋白质复合物识别算法 被引量:8
7
作者 郑文萍 李晋玉 王杰 《计算机科学与探索》 CSCD 北大核心 2018年第5期794-803,共10页
蛋白质互作用网络是一种典型的复杂网络,呈现了明显的社区结构。网络中的社区对应于功能模块,通常被看作蛋白质复合物。蛋白质复合物识别对预测蛋白质功能,解释特定生物进程具有重要作用。基于种子节点扩展的图聚类方法在蛋白质复合物... 蛋白质互作用网络是一种典型的复杂网络,呈现了明显的社区结构。网络中的社区对应于功能模块,通常被看作蛋白质复合物。蛋白质复合物识别对预测蛋白质功能,解释特定生物进程具有重要作用。基于种子节点扩展的图聚类方法在蛋白质复合物识别中应用广泛。针对此类算法最终结果受种子节点的影响较大,并且在簇的形成过程中搜索空间有限等问题,提出了一种基于遗传算法的蛋白质复合物识别算法GAGC(genetic algorithm based graph clustering),其中个体表示聚类结果(类别之间可能存在重叠节点),以F-measure值作为种群进化的目标函数。算法采用IPCA(improvement development clustering algorithm)算法产生初始种群;针对初始种群,设计了染色体对齐方式以进行交叉操作产生下一代种群。通过与DPClus、MCODE、IPCA、Cluster One、HC-PIN、CFinder等经典算法的对比实验表明,GAGC算法能够扩大图聚类算法的搜索空间,提高解的多样性,进而提高蛋白质复合物检测的性能。 展开更多
关键词 蛋白质互作用网络 遗传算法 图聚类 蛋白质复合物
下载PDF
一种基于节点稳定性和邻域相似性的社区发现算法 被引量:5
8
作者 郑文萍 刘美麟 杨贵 《计算机科学》 CSCD 北大核心 2022年第9期83-91,共9页
复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性... 复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性和邻域相似性的社区发现算法(Node Stability and Neighbor Similarity Based Community Detection Algorithm, NSNSA)。首先定义节点的标签熵并对节点在社区发现过程中的稳定性进行度量,选择标签熵较低的节点作为稳定节点集;其次根据节点邻域的标签构成情况定义节点的邻域相似性,对节点与其邻居节点的社区归属一致性进行度量;然后利用稳定节点与其直接邻居中邻域相似性最高的节点构造初始网络,并在该子网络上运行标签传播算法,以得到可靠性较高的初始社区发现结果;最后将未聚类节点分配至与其Katz相似性最高的节点所在的社区,对小规模社区进行合并处理,以得到最终的社区划分结果。在真实网络及人工网络数据集上,与LPA,BGLL,Walktrap, Infomap, LPA-S等经典社区发现算法的对比实验表明,NSNSA算法在模块度以及标准互信息方面表现良好。 展开更多
关键词 复杂网络 社区结构 标签熵 节点稳定性 邻域相似性
下载PDF
基于随机游走的改进标签传播算法 被引量:4
9
作者 郑文萍 岳香豆 杨贵 《计算机应用》 CSCD 北大核心 2020年第12期3423-3429,共7页
社区发现是挖掘社交网络隐藏信息的一个有用的工具,而标签传播算法(LPA)是社区发现算法中的一种常见算法,不需要任何的先验知识,且运行速度快。针对标签传播算法有很强的随机性而导致的社区发现算法结果不稳定的问题,提出了一种基于随... 社区发现是挖掘社交网络隐藏信息的一个有用的工具,而标签传播算法(LPA)是社区发现算法中的一种常见算法,不需要任何的先验知识,且运行速度快。针对标签传播算法有很强的随机性而导致的社区发现算法结果不稳定的问题,提出了一种基于随机游走的改进标签传播算法(LPARW)。首先,根据在网络上进行随机游走确定了节点重要性的排序,从而得到节点的更新顺序;然后,遍历节点的更新序列,对每个节点将其与排序在其之前的节点进行相似性计算,若该节点与排序在其之前的节点是邻居节点且它们之间的相似性大于阈值,则将排序在其之前的节点选为种子节点;最后,将种子节点的标签传播给其余的节点,得到社区的最终划分结果。将所提算法与一些经典的标签传播算法在4个有标签的网络和5个无标签的真实网络上进行比较分析,实验结果表明所提算法在标准互信息(NMI)、调整兰德系数(ARI)和模块度等经典的评价指标上的性能均优于其余对比算法,可见该算法具有很好的社区划分效果。 展开更多
关键词 复杂网络 社区发现 标签传播算法 随机游走 种子扩展策略
下载PDF
基于模块性的检测簇结构的图聚类算法研究 被引量:2
10
作者 郑文萍 王丹 王杰 《小型微型计算机系统》 CSCD 北大核心 2016年第7期1618-1623,共6页
从大规模的复杂网络中挖掘重要的簇结构已经成为当今研究的热点之一.对复杂网络中基于密度和模块性的图聚类算法中的边权重定义、种子选择与扩展等问题进行了研究,提出一种检测复杂网络中稠密簇结构的局部模块性图聚类算法LM C.算法首... 从大规模的复杂网络中挖掘重要的簇结构已经成为当今研究的热点之一.对复杂网络中基于密度和模块性的图聚类算法中的边权重定义、种子选择与扩展等问题进行了研究,提出一种检测复杂网络中稠密簇结构的局部模块性图聚类算法LM C.算法首先对网络中的边权重和子图的模块性进行定义,然后选择权重最大的边作为聚类"种子边",最后对种子边进行扩展进而得到新簇.采用计算机构造数据和蛋白质作用网络数据对基于局部模块性的图聚类算法LMC进行实验.结果表明,算法LMC相较于其它聚类算法在检测复杂网络中相对稠密的簇结构的性能较好. 展开更多
关键词 复杂网络 模块性 网络簇结构 图聚类
下载PDF
一种基于非对称三角形割的重叠社区发现算法 被引量:4
11
作者 郑文萍 毕欣琦 杨贵 《南京师范大学学报(工程技术版)》 CAS 2022年第1期1-8,共8页
发现由相似功能的个体所形成的社区结构是复杂网络分析的重要任务之一.提出一种基于非对称三角形割的重叠社区发现算法,首先根据社区内三角形连接情况对社区质量进行评价,并根据节点与社区的三角形连接定义了节点对社区的归属度和连接强... 发现由相似功能的个体所形成的社区结构是复杂网络分析的重要任务之一.提出一种基于非对称三角形割的重叠社区发现算法,首先根据社区内三角形连接情况对社区质量进行评价,并根据节点与社区的三角形连接定义了节点对社区的归属度和连接强度.考虑到网络不同部分连接密度的差异,在将节点从社区中移除或加入社区的过程中,为每个节点分别设置了不同的移除阈值和扩展阈值,以提高社区发现质量.将每个节点与其邻居节点组成初始社区,将归属度低于移除阈值的边缘节点从社区中移除,将连接强度高于扩展阈值的外围节点加入社区,社区节点移除和扩展阶段迭代进行直至社区结构趋于稳定,最后去掉重叠率过高的社区得到最终结果.在7个带社区标签的网络上将所提算法与其他7个经典重叠社区检测算法进行比较,通过重叠标准互信息和F;指标进行评价,结果表明所提算法可以较好地发现不同规模网络中的社区结构. 展开更多
关键词 复杂网络 社区发现 重叠社区发现算法 非对称三角形割 社区适应度
下载PDF
一种基于相对熵的随机游走相似性度量模型 被引量:5
12
作者 郑文萍 刘韶倩 穆俊芳 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期984-999,共16页
针对基于随机游走的节点相似性度量模型中存在的大度节点依赖问题,从信息论的角度提出了一种改进的随机游走节点相似性度量方法:基于相对熵的随机游走相似性度量方法RE model(A random walk similarity measure model based on Relative... 针对基于随机游走的节点相似性度量模型中存在的大度节点依赖问题,从信息论的角度提出了一种改进的随机游走节点相似性度量方法:基于相对熵的随机游走相似性度量方法RE model(A random walk similarity measure model based on Relative Entropy).首先根据随机游走模型得到网络中节点的转移概率向量,再计算两个节点转移概率向量的相对熵得到该节点对的相似性.由于转移概率向量给出了从一个特定节点出发经过多步随机游走后到达网络其他所有节点的概率,导致网络中的每个节点在计算相对熵的过程中都被等同看待,并且网络规模的增大会使计算得到的节点间相似性耗时更多且存在较大偏差.根据节点经过多步随机游走后到达网络中影响力较大的节点的转移概率来构造该节点的转移概率分布,计算两个节点的转移概率分布的相对熵以得到网络中节点对之间的差异分数,进而得到网络节点间的相似性矩阵.RE model度量方法降低了传统随机游走相似性度量对于大度节点的依赖性.通过在真实网络数据集上的实验表明,RE model算法在对称性、网络传播及社区发现等方面表现良好. 展开更多
关键词 复杂网络 相对熵 节点相似性度量 随机游走
下载PDF
一种基于节点稳定性的社区发现算法 被引量:1
13
作者 郑文萍 刘美麟 +1 位作者 穆俊芳 杨贵 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期101-109,共9页
许多成功的社区发现算法已经被广泛应用于复杂网络社区发现任务中.随着数据复杂性的增加,网络中节点间的关系也呈现多样化的特点,因此提出一种基于信息熵的节点稳定性度量方法,衡量网络中节点在社区划分中的稳定性;并在此基础上提出一... 许多成功的社区发现算法已经被广泛应用于复杂网络社区发现任务中.随着数据复杂性的增加,网络中节点间的关系也呈现多样化的特点,因此提出一种基于信息熵的节点稳定性度量方法,衡量网络中节点在社区划分中的稳定性;并在此基础上提出一种基于节点稳定性的社区发现算法(Node Stability⁃based Algorithm,NSA).首先得到网络的t种社区划分,计算各节点的标签熵,选择熵小于一定阈值的节点作为网络的稳定节点集S;然后,利用所得到的稳定节点集S从原网络中抽取一个包含S的连通子图Gs,使Gs中节点的不稳定性尽可能低;在连通子图Gs上进行社区发现,得到初始聚类结果,再计算其他未聚类节点与初始类簇的距离,确定其社区归属,得到最终聚类结果.在四个带标签真实网络数据集和八个不带标签的真实网络数据集上,与LPA,Infomap,Walktrap,BGLL,LPA⁃S等经典算法的比较实验表明,所提出的NSA算法能够较好地进行社区发现,在NMI和模块度等方面表现良好. 展开更多
关键词 复杂网络 社区结构 标签熵 节点稳定性 标签传播
下载PDF
基于双监督网络嵌入的社区发现算法 被引量:1
14
作者 郑文萍 王英楠 杨贵 《模式识别与人工智能》 EI CSCD 北大核心 2022年第3期283-290,共8页
针对基于网络嵌入的社区检测算法中节点嵌入和聚类过程独立进行时容易陷入局部极值的问题,文中提出基于双监督网络嵌入的社区发现算法.首先利用图自编码器,得到可保持网络的一阶相似性的节点嵌入.优化模块度,发现拓扑连接紧密的社区.采... 针对基于网络嵌入的社区检测算法中节点嵌入和聚类过程独立进行时容易陷入局部极值的问题,文中提出基于双监督网络嵌入的社区发现算法.首先利用图自编码器,得到可保持网络的一阶相似性的节点嵌入.优化模块度,发现拓扑连接紧密的社区.采用自监督聚类优化,发现嵌入空间上相似的社区.引入互监督机制,使发现的社区在模块度优化和自监督聚类这两个角度上具有一致性,同时避免算法陷入局部极值.4个真实网络上的对比实验表明,DSNE性能较优. 展开更多
关键词 社区发现 网络嵌入 图自编码器 模块度
下载PDF
具有社区结构的无标度网络生成算法 被引量:3
15
作者 郑文萍 曲瑞 穆俊芳 《计算机科学》 CSCD 北大核心 2018年第2期76-83,共8页
近年来,生成图模型在复杂网络研究中的作用越来越重要。图的生成过程对于研究疾病的蔓延和信息的传播具有重大意义,同时图模型的生成也有助于更深入地研究复杂网络的特性。为了能够生成既符合真实网络特征又具有结构多样性的复杂网络,... 近年来,生成图模型在复杂网络研究中的作用越来越重要。图的生成过程对于研究疾病的蔓延和信息的传播具有重大意义,同时图模型的生成也有助于更深入地研究复杂网络的特性。为了能够生成既符合真实网络特征又具有结构多样性的复杂网络,提出了一种具有社区结构的可调节聚集系数和模块性的无标度网络生成算法——TCMSN(Scale Free Network with Tunable Clustering Coefficient and Modularity)。通过调节混合参数可以调节生成网络的模块性,通过调节社区内连边的概率和混合参数可以对网络聚集系数进行调节。TCMSN采用了合理的连边策略,在不破坏网络结构多样性的情况下,能尽可能维持网络的无标度特性。人工构造数据和真实网络数据的对比实验结果表明,TCMSN算法能够生成可调节聚集系数和模块性的无标度网络模型,且能够生成最接近真实网络社区结构特征的网络模型。 展开更多
关键词 网络生成模型 BA无标度网络 聚集系数 社区结构
下载PDF
广义Petersen图的最小点覆盖集 被引量:1
16
作者 郑文萍 郭炳 杨贵 《山西师范大学学报(自然科学版)》 2014年第1期1-6,共6页
点覆盖问题是一个著名的NP完全问题.本文对广义Petersen图P(n,2)的精确最小点覆盖数进行研究,讨论并证明了广义Petersen图P(n,2)的最小点覆盖数,给出了最小点覆盖集的构造方法.
关键词 最小点覆盖集 点覆盖数 广义PETERSEN图
下载PDF
一种基于局部路径信息的重叠社区发现算法
17
作者 郑文萍 王宁 杨贵 《计算机科学》 CSCD 北大核心 2022年第12期155-162,共8页
重叠社区发现是复杂网络分析的主要任务之一。针对现有的基于局部扩展和优化的重叠社区发现方法受初始种子节点选择影响较大、适应度函数无法度量节点间多样的连接方式等问题,提出了一种基于局部路径信息的重叠社区发现算法(Local Path ... 重叠社区发现是复杂网络分析的主要任务之一。针对现有的基于局部扩展和优化的重叠社区发现方法受初始种子节点选择影响较大、适应度函数无法度量节点间多样的连接方式等问题,提出了一种基于局部路径信息的重叠社区发现算法(Local Path Information-based Overlapping Community Detection Algorithm,LPIO)。首先选取局部极大度点作为初始种子节点,并根据社区内节点邻域标签一致性更新社区的种子节点集,避免初始种子节点对算法性能的影响;然后为度量稀疏网络中节点间多样的连接方式,给出了基于局部路径信息的社区适应度函数,扩展种子节点集得到社区结构;最后计算未聚类节点与社区种子集之间的点不重复路径数量,得到未聚类节点与已有社区间的距离,为未聚类节点分配社区。在4个有标签网络和8个无标签网络上,与7个经典重叠社区发现算法进行对比,实验结果表明,所提算法在重叠标准互信息(ONMI)、F1分数、扩展模块度(EQ)等方面表现良好。 展开更多
关键词 重叠社区发现 局部扩展和优化 社区适应度 局部路径信息
下载PDF
一种基于标签传播的两阶段社区发现算法 被引量:12
18
作者 郑文萍 车晨浩 +1 位作者 钱宇华 王杰 《计算机研究与发展》 EI CSCD 北大核心 2018年第9期1959-1971,共13页
针对标签传播社区发现算法在节点更新顺序及标签传播过程中存在较大随机性而导致划分结果稳定性差的问题,提出一种基于标签传播的两阶段社区发现算法(a two-stage community detectionalgorithm based on label propagation,LPA-TS),通... 针对标签传播社区发现算法在节点更新顺序及标签传播过程中存在较大随机性而导致划分结果稳定性差的问题,提出一种基于标签传播的两阶段社区发现算法(a two-stage community detectionalgorithm based on label propagation,LPA-TS),通过参与系数确定节点更新顺序,并在标签传播过程中依据节点间相似性更新节点标签,得到初始社区划分.将社区看作节点,社区间连边数作为边权重,得到社区关系网络.按照参与系数由低到高的顺序合并社区关系网络中的节点,得到最终社区划分结果.算法LPA-TS减少了传统LPA方法在节点更新和标签传播过程的随机性;在第2阶段,将不符合弱社区定义的初始社区与连边最多的相邻社区合并,再按照社区参与系数由低到高的顺序合并初始社区提升社区发现质量.通过与一些经典算法在8个真实网络及不同参数下LFR benchmark人工网络数据集上的实验比较表明LPA-TS算法表现了良好的稳定性,在NMI、ARI、模块性等方面表现良好. 展开更多
关键词 复杂网络 社区发现 标签传播 参与系数 弱社区
下载PDF
一种面向蛋白质复合体检测的图聚类方法 被引量:14
19
作者 王杰 梁吉业 郑文萍 《计算机研究与发展》 EI CSCD 北大核心 2015年第8期1784-1793,共10页
蛋白质互作用(protein-protein interaction,PPI)网络是广泛存在的一类复杂生物网络,其网络拓扑特征与功能模块分析密切相关.图聚类是对复杂网络进行分析和处理的一种重要计算方法.传统的PPI网络中蛋白质复合体检测算法通常对网络图中... 蛋白质互作用(protein-protein interaction,PPI)网络是广泛存在的一类复杂生物网络,其网络拓扑特征与功能模块分析密切相关.图聚类是对复杂网络进行分析和处理的一种重要计算方法.传统的PPI网络中蛋白质复合体检测算法通常对网络图中的对象进行硬划分,而寻找网络中的重叠簇的软聚类算法已成为当前研究热点之一.现有的软聚类算法较少关注寻找网络中具有重要生物意义的小规模非稠密簇.对此,基于网络中结点邻域给出了边关联强度的度量方法,并在此基础上提出了一种基于流模拟的PPI网络中复合体检测的图聚类(flow-simulation graph clustering,F-GCL)算法,该算法可以在快速发现PPI网络中的重叠簇的同时找到小规模非稠密簇;同时,与MCODE(molecular complex detection),MCL(Markov clustering),RNSC(restricted neighborhood search clustering)和CPM(clique percolation method)算法在6个酿酒酵母PPI网络上进行比较,该算法在F-measure,Accuracy,Separation方面表现了较好的性能. 展开更多
关键词 流模拟 图聚类 软聚类 蛋白质互作用网络 蛋白质复合体
下载PDF
71例恶性梗阻性黄疸介入治疗的围手术期护理 被引量:11
20
作者 张华平 陶然 +2 位作者 张丽琴 郑文萍 蒋蕾 《介入放射学杂志》 CSCD 北大核心 2011年第2期154-156,共3页
目的总结71例恶性梗阻性黄疸患者经皮穿刺胆道引流的围手术期护理经验。方法认真细致地做好术前准备,重视心理护理,加强营养支持,保证患者的体质能耐受手术。术后严密监测生命体征,观察黄疸消退情况。保持引流管通畅,做好穿刺局部及引... 目的总结71例恶性梗阻性黄疸患者经皮穿刺胆道引流的围手术期护理经验。方法认真细致地做好术前准备,重视心理护理,加强营养支持,保证患者的体质能耐受手术。术后严密监测生命体征,观察黄疸消退情况。保持引流管通畅,做好穿刺局部及引流管的护理。结果 71例恶性梗阻性黄疸患者术前准备充分,术后护理得当,黄疸消退明显,胆道梗阻解除,肝功能改善,患者生活质量提高,存活时间延长,取得满意的临床护理效果。结论加强围手术期护理可以使行经皮穿刺胆管引流术的患者取得较好的治疗和护理效果。 展开更多
关键词 恶性梗阻性黄疸 介入治疗 护理
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部