A series of innovative green metallurgical processes using novel reaction media including the NaOH/KOH sub-molten salt media and the NaOH-NaNO3 binary molten salt medium, for the extraction of vanadium and chromium fr...A series of innovative green metallurgical processes using novel reaction media including the NaOH/KOH sub-molten salt media and the NaOH-NaNO3 binary molten salt medium, for the extraction of vanadium and chromium from the vanadium slag have been developed. In comparison with the traditional sodium salt roasting technology, which operates at 850 ℃, the operation temperatures of these new processes drop to 200-400 ℃. Further, the extraction rates of vanadium and chromium utilizing the new approaches could reach 95% and 90%, respectively, significantly higher than those in the traditional roasting process, which are 75% and approximate zero, respectively. Besides, no hazardous gases and toxic tailings are discharged during the extraction process. Compared with the conventional roasting method, these new technologies show obvious advantages in terms of energy, environments, and the mineral resource utilization efficiency, providing an attractive alternative for the green technology upgrade of the vanadium production industries.展开更多
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring sp...A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.展开更多
The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was ...The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.展开更多
To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic r...To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.展开更多
基金Project(2013CB632605)supported by the National Basic Research Program of ChinaProjects(51274178,51090382)supported by theNational Natural Science Foundation of ChinaProject(KGCX2-EW-215)supported by the Key Deployment Program of ChineseAcademy of Sciences
文摘A series of innovative green metallurgical processes using novel reaction media including the NaOH/KOH sub-molten salt media and the NaOH-NaNO3 binary molten salt medium, for the extraction of vanadium and chromium from the vanadium slag have been developed. In comparison with the traditional sodium salt roasting technology, which operates at 850 ℃, the operation temperatures of these new processes drop to 200-400 ℃. Further, the extraction rates of vanadium and chromium utilizing the new approaches could reach 95% and 90%, respectively, significantly higher than those in the traditional roasting process, which are 75% and approximate zero, respectively. Besides, no hazardous gases and toxic tailings are discharged during the extraction process. Compared with the conventional roasting method, these new technologies show obvious advantages in terms of energy, environments, and the mineral resource utilization efficiency, providing an attractive alternative for the green technology upgrade of the vanadium production industries.
基金Project(2013CB632605)supported by the National Basic Research Development Program of ChinaProjects(51274178,51274179)supported by the National Natural Science Foundation of China
文摘A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.
基金Project (2012BAC12B01) supported by the National Key Technologies R&D Program of ChinaProject (2012FJ1010) supported by Science and Technology Major Project of Hunan Province,China
文摘The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.
基金Project (2012BAF03B01) supported by the National Science and Technology Support Program of ChinaProject (2011AA060701) supported by the Hi-tech Research and Development Program of China
文摘To utilize CFBC Al-rich fly ash, a mild hydrochemical extraction process was investigated for recovery of alumina. An alumina extraction efficiency of 92.31%was attained using a 45%NaOH solution, an original caustic ratio (molar ratio of Na2O to Al2O3 in the sodium aluminate solution) of 25, a molar ratio of CaO to SiO2 in the fly ash of 1.1, a liquid volume to solid mass ratio of 9, a reaction temperature of 280 ℃, and a residence time of 1 h when treating fly ash with an alumina to silica mass ratio (A/S) of 0.78 and an alumina content of 32.43%. Additionally, the alumina leaching mechanism was explored via structural and chemical analysis, which revealed that after alkaline digestion, the main solid phase containing silica was NaCaHSiO4 with a theoretical A/S of zero.