Ion thruster plumes from a multi-thruster array of different working configurations are simulated by a hybrid fluid-particle software. The particle in cell method is employed to model the transports of ions. The direc...Ion thruster plumes from a multi-thruster array of different working configurations are simulated by a hybrid fluid-particle software. The particle in cell method is employed to model the transports of ions. The direct simulation Monte Carlo method is used to model momentum and charge exchange (CEX) collisions. The software is based on unstructured grids which make it easy to handle with complex geometry. The results of chamber simulation are compared with experimental data in ion current density and number density, which show good agreements. The maximum difference of current density along the thruster centerline is less than 9.30%. The interaction effects of plumes when multiple thrusters are operating in vacuum are predicted. Distributions of single charged xenon ions are significantly different in the near-field plume flow, however, merge into one in the far downstream region. Moreover, the interaction effect on the spatial distribution of CEX xenon ions is displayed as well.展开更多
文摘Ion thruster plumes from a multi-thruster array of different working configurations are simulated by a hybrid fluid-particle software. The particle in cell method is employed to model the transports of ions. The direct simulation Monte Carlo method is used to model momentum and charge exchange (CEX) collisions. The software is based on unstructured grids which make it easy to handle with complex geometry. The results of chamber simulation are compared with experimental data in ion current density and number density, which show good agreements. The maximum difference of current density along the thruster centerline is less than 9.30%. The interaction effects of plumes when multiple thrusters are operating in vacuum are predicted. Distributions of single charged xenon ions are significantly different in the near-field plume flow, however, merge into one in the far downstream region. Moreover, the interaction effect on the spatial distribution of CEX xenon ions is displayed as well.