离子回旋射频(Ion Cyclotron Range of Frequencies,ICRF)波加热是托卡马克装置上至关重要的辅助加热方式之一。托卡马克装置中国环流三号(HL-3,原名HL-2M)拟安装加热功率为6 MW的ICRF加热系统。本工作利用TRANSP程序,模拟并研究了ICRF...离子回旋射频(Ion Cyclotron Range of Frequencies,ICRF)波加热是托卡马克装置上至关重要的辅助加热方式之一。托卡马克装置中国环流三号(HL-3,原名HL-2M)拟安装加热功率为6 MW的ICRF加热系统。本工作利用TRANSP程序,模拟并研究了ICRF加热的频率和功率对聚变中子产额以及快离子分布的影响。研究结果表明:ICRF的频率和功率对中子产额有显著影响,固定ICRF频率时,中子产额与加热功率成正比关系,而在固定ICRF加热功率的情况下,中子产额的增加幅度显著依赖ICRF的频率,在研究参数范围内,30 MHz的ICRF对中子产额的增加具有最显著的增强作用。快离子分布的模拟结果显示,在考虑ICRF加热后,中性束和ICRF的协同加热机制能够将快离子加热至最高1 MeV,有效地提高了中子产额。此外,基于中子相机诊断的概念对中子信号进行了仿真。结果表明,中子相机能够有效地测量到由ICRF加热导致的中子产额高低和分布剖面的变化,这为将来优化中子相机诊断系统设计和测量中子空间分布提供了一定的参考。展开更多
Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that...Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.展开更多
This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFT...This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented.展开更多
Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investig...Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.展开更多
In the previous analytical description of the neoclassical polarization current effect on the neoclassical tearing modes (NTMs), it is usually assumed that the magnetic island is much larger than the finite-ion-bana...In the previous analytical description of the neoclassical polarization current effect on the neoclassical tearing modes (NTMs), it is usually assumed that the magnetic island is much larger than the finite-ion-banana-width (FBW). This assumption is questionable when the experimentally observed seed island width of the NTMs is comparable to the FBW. We introduce a simple and direct theoretical method to investigate the FBW effect on the neoclassical polarization contribution to the NTM evolution in collisional plasmas. The results show that, the FBW effect can strongly modify the neoclassical polarization current profile near the island separatrix, and thus weaken its probably stabilizing effect on the NTMs.展开更多
Transport of fast ions is a crucial issue during the operation of ITER.Redistribution of neutral beam injection(NBI)fast ions by the ideal internal magnetohydrodynamic(MHD)instabilities in ITER is studied utilizing th...Transport of fast ions is a crucial issue during the operation of ITER.Redistribution of neutral beam injection(NBI)fast ions by the ideal internal magnetohydrodynamic(MHD)instabilities in ITER is studied utilizing the guiding-center code ORBIT(White R B and Chance M S 1984Phys.Fluids 272455).Effects of the perturbation amplitude A of the internal kink,the perturbation frequency f of the fishbone instability,and the toroidal mode number n of the internal kink are investigated,respectively,in this work.The n=1 internal kink mode can cause NBI fast ions transporting in real space from regions of 0<s≤0.32 to 0.32<s≤0.53,where s labels the normalized plasma radial coordinate.The transport of fast ions is greater as the perturbation amplitude increases.The maximum relative change of the number of fast ions approaches 5%when the perturbation amplitude rises to 500 G.A strong transport is generated between the regions of 0<s≤0.05 and 0.05<s≤0.12 in the presence of the fishbone instability.Higher frequency results in greater transport,and the number of fast ions in 0<s≤0.05 is reduced by 30%at the fishbone frequency of 100 k Hz.Perturbations with higher n will lead to the excursion of fast ion transport regions outward along the radial direction.The loss of fast ions,however,is not affected by the internal MHD perturbation.Strong transport from 0<s≤0.05 to 0.05<s≤0.12 does not influence the plasma heating power of ITER,since the NBI fast ions are still located in the plasma core.On the other hand,the influence of fast ion transport from 0<s≤0.32 to 0.32<s≤0.53 needs further study.展开更多
In this article,the design of a Lyman-alpha-based beam emission spectroscopy(LAB)diagnostic on the HL-2A tokamak has been proposed for the first time.The purpose of this novel diagnostic is to measure density fluctuat...In this article,the design of a Lyman-alpha-based beam emission spectroscopy(LAB)diagnostic on the HL-2A tokamak has been proposed for the first time.The purpose of this novel diagnostic is to measure density fluctuations of tokamak plasma.The light-collection system of LAB,which consists of the first mirror and two groups of coaxial double-mirror telescopes,can realize a twosegmented viewing field ofρ=0–0.2 andρ=0.75–1,which is optimized to measure plasma density fluctuation,not only in the edge transport barrier region but also in the internal transport barrier region,to investigate the underlying physics of turbulence in tokamaks.Spectrometers are developed to separate out the Doppler-shifted target line(122.03 and 122.17 nm)from the background Lyman-alpha line(121.53 nm).Here,30 Core-LAB channels and 30 Edge-LAB channels are under development on the HL-2A tokamak.It has high radial spatial resolutions of about 2.7 mm and 3.3 mm for the core and edge channels,respectively.Taking the high light intensity of this Lyman-alpha line into account,temporal resolution of 200 k Hz can be ensured by broad bandwidth amplifiers.This high spatio-temporal resolution makes LAB a potential keen tool to experimentally investigate tokamak plasma physics.展开更多
If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in t...If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall fiN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.展开更多
The kinetic effects of thermal particles and fast ions on internal kink(IK)mode are numerically investigated by the MHD-kinetic hybrid code MARS-K.It is shown that either thermal particles or fast ions have stabilizin...The kinetic effects of thermal particles and fast ions on internal kink(IK)mode are numerically investigated by the MHD-kinetic hybrid code MARS-K.It is shown that either thermal particles or fast ions have stabilizing influence on IK.However,the former can not fully stabilize IK,and the later can suppress the IK.In addition,the synergistic effect from thermal particles and fast ions induces more stronger damping on IK.The kinetic effects from particles significantly raise the critical value of poloidal beta(βpcrit)for driving IK in the toroidal plasma.This implies a method of controlling IK or sawtooth in the high-βp discharge scenario of tokamak.It is noted that,at the q=1 rational surface,mode structure becomes more sharp due to the self-consistent modification by particles’kinetic effect.展开更多
文摘离子回旋射频(Ion Cyclotron Range of Frequencies,ICRF)波加热是托卡马克装置上至关重要的辅助加热方式之一。托卡马克装置中国环流三号(HL-3,原名HL-2M)拟安装加热功率为6 MW的ICRF加热系统。本工作利用TRANSP程序,模拟并研究了ICRF加热的频率和功率对聚变中子产额以及快离子分布的影响。研究结果表明:ICRF的频率和功率对中子产额有显著影响,固定ICRF频率时,中子产额与加热功率成正比关系,而在固定ICRF加热功率的情况下,中子产额的增加幅度显著依赖ICRF的频率,在研究参数范围内,30 MHz的ICRF对中子产额的增加具有最显著的增强作用。快离子分布的模拟结果显示,在考虑ICRF加热后,中性束和ICRF的协同加热机制能够将快离子加热至最高1 MeV,有效地提高了中子产额。此外,基于中子相机诊断的概念对中子信号进行了仿真。结果表明,中子相机能够有效地测量到由ICRF加热导致的中子产额高低和分布剖面的变化,这为将来优化中子相机诊断系统设计和测量中子空间分布提供了一定的参考。
基金supported by National Natural Science Foundation of China (Nos. 12205033, 12105317, 11905022 and 11975062)Dalian Youth Science and Technology Project (No. 2022RQ039)+1 种基金the Fundamental Research Funds for the Central Universities (No. 3132023192)the Young Scientists Fund of the Natural Science Foundation of Sichuan Province (No. 2023NSFSC1291)
文摘Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.
文摘This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03090000 and 2022YFE03060002)National Natural Science Foundation of China(No.12375214)+3 种基金China National Nuclear Corporation Fundamental Research Program(No.CNNC-JCYJ-202236)Innovation Program of Southwestern Institute of Physics(No.202301XWCX006-04)supported by Youth Science and Technology Innovation Team of Sichuan Province(No.2022JDTD0003)US DoE Office of Science(Nos.DE-FG02-95ER54309 and DE-FC02-04ER54698)。
文摘Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.
基金supported by the National Magnetic Confinement Fusion Science Program of China (Nos.2011GB105002,2014GB107001 and 2014GB124004)National Natural Science Foundation of China(Nos.11175057 and 11275061)
文摘In the previous analytical description of the neoclassical polarization current effect on the neoclassical tearing modes (NTMs), it is usually assumed that the magnetic island is much larger than the finite-ion-banana-width (FBW). This assumption is questionable when the experimentally observed seed island width of the NTMs is comparable to the FBW. We introduce a simple and direct theoretical method to investigate the FBW effect on the neoclassical polarization contribution to the NTM evolution in collisional plasmas. The results show that, the FBW effect can strongly modify the neoclassical polarization current profile near the island separatrix, and thus weaken its probably stabilizing effect on the NTMs.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE03060002,2019YFE03090100)by the Innovation Program of Southwestern Institute of Physics(No.202001XWCXRC001)partly supported by the Youth Science and Technology Innovation Team of Sichuan Province(No.2022JDTD0003)。
文摘Transport of fast ions is a crucial issue during the operation of ITER.Redistribution of neutral beam injection(NBI)fast ions by the ideal internal magnetohydrodynamic(MHD)instabilities in ITER is studied utilizing the guiding-center code ORBIT(White R B and Chance M S 1984Phys.Fluids 272455).Effects of the perturbation amplitude A of the internal kink,the perturbation frequency f of the fishbone instability,and the toroidal mode number n of the internal kink are investigated,respectively,in this work.The n=1 internal kink mode can cause NBI fast ions transporting in real space from regions of 0<s≤0.32 to 0.32<s≤0.53,where s labels the normalized plasma radial coordinate.The transport of fast ions is greater as the perturbation amplitude increases.The maximum relative change of the number of fast ions approaches 5%when the perturbation amplitude rises to 500 G.A strong transport is generated between the regions of 0<s≤0.05 and 0.05<s≤0.12 in the presence of the fishbone instability.Higher frequency results in greater transport,and the number of fast ions in 0<s≤0.05 is reduced by 30%at the fishbone frequency of 100 k Hz.Perturbations with higher n will lead to the excursion of fast ion transport regions outward along the radial direction.The loss of fast ions,however,is not affected by the internal MHD perturbation.Strong transport from 0<s≤0.05 to 0.05<s≤0.12 does not influence the plasma heating power of ITER,since the NBI fast ions are still located in the plasma core.On the other hand,the influence of fast ion transport from 0<s≤0.32 to 0.32<s≤0.53 needs further study.
基金supported by the National Key R&D Program of China(Nos.2022YFE03100002,2017YFE0301201 and 2018YFE0303102)Sichuan Science and Technology Program(Nos.2022JDJQ0038 and 2020JDTD0030)National Natural Science Foundation of China(No.12205087)。
文摘In this article,the design of a Lyman-alpha-based beam emission spectroscopy(LAB)diagnostic on the HL-2A tokamak has been proposed for the first time.The purpose of this novel diagnostic is to measure density fluctuations of tokamak plasma.The light-collection system of LAB,which consists of the first mirror and two groups of coaxial double-mirror telescopes,can realize a twosegmented viewing field ofρ=0–0.2 andρ=0.75–1,which is optimized to measure plasma density fluctuation,not only in the edge transport barrier region but also in the internal transport barrier region,to investigate the underlying physics of turbulence in tokamaks.Spectrometers are developed to separate out the Doppler-shifted target line(122.03 and 122.17 nm)from the background Lyman-alpha line(121.53 nm).Here,30 Core-LAB channels and 30 Edge-LAB channels are under development on the HL-2A tokamak.It has high radial spatial resolutions of about 2.7 mm and 3.3 mm for the core and edge channels,respectively.Taking the high light intensity of this Lyman-alpha line into account,temporal resolution of 200 k Hz can be ensured by broad bandwidth amplifiers.This high spatio-temporal resolution makes LAB a potential keen tool to experimentally investigate tokamak plasma physics.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2012GB105000,2011GB101000,2011GB107000,and 2013013GB102000)the National Natural Science Foundation of China(Grant Nos.10725523,10721505,10090212,111005037,and 11205199)
文摘If βN exceeds βNno-wall, the plasma will be unstable because of external kink and resistive wall mode (RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak (EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional (1D) surface to present the effect of the passive plate is proved to be credible. The no wall fiN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.
基金the National Key R&D Program of China(Grant No.2019YFE03050003)the National Magnetic Confinement Fusion Science Program(Grant No.2018YFE0304103)the National Natural Science Foundation of China(Grant Nos.11775067 and11905067)。
文摘The kinetic effects of thermal particles and fast ions on internal kink(IK)mode are numerically investigated by the MHD-kinetic hybrid code MARS-K.It is shown that either thermal particles or fast ions have stabilizing influence on IK.However,the former can not fully stabilize IK,and the later can suppress the IK.In addition,the synergistic effect from thermal particles and fast ions induces more stronger damping on IK.The kinetic effects from particles significantly raise the critical value of poloidal beta(βpcrit)for driving IK in the toroidal plasma.This implies a method of controlling IK or sawtooth in the high-βp discharge scenario of tokamak.It is noted that,at the q=1 rational surface,mode structure becomes more sharp due to the self-consistent modification by particles’kinetic effect.