类偏斜问题(class i mbalance problem)是数据挖掘领域的常见问题之一,人们提出了各种策略来处理这个问题.当训练样本存在类偏斜问题时,kNN分类器会将小类中的样本错分到大类,导致分类的宏F1指标下降.针对kNN存在的这个缺陷,提出了文本...类偏斜问题(class i mbalance problem)是数据挖掘领域的常见问题之一,人们提出了各种策略来处理这个问题.当训练样本存在类偏斜问题时,kNN分类器会将小类中的样本错分到大类,导致分类的宏F1指标下降.针对kNN存在的这个缺陷,提出了文本训练集的临界点(critical point,CP)的概念并对其性质进行了探讨,给出了求CP,CP的下近似值LA、上近似值UA的算法.之后,根据LA或UA及训练样本数对传统的kNN决策函数进行修改,这就是自适应的加权kNN文本分类.为了验证自适应的加权kNN文本分类的有效性,设计了2组实验进行对比:一组为不同的收缩因子间进行对比,可看做是与Tan的工作进行对比,同时用来证实在LA或UA上分类器的宏F1较好;另一组则是与随机重取样进行实验对比,其中,传统kNN方法作为对比的基线.实验表明,所提的自适应加权kNN文本分类优于随机重取样,使得宏F1指标明显上升.该方法有点类似于代价相关学习.展开更多
互联网上充斥着用户生成文档,如论坛中的帖子。如何对这些杂乱无章的内容进行监控是安全部门所关心的重点之一,话题识别与跟踪(Topic Detection and Tracking,TDT)是监控的有效手段之一。但是,网络论坛帖子的特点是回帖篇幅短、话题转移...互联网上充斥着用户生成文档,如论坛中的帖子。如何对这些杂乱无章的内容进行监控是安全部门所关心的重点之一,话题识别与跟踪(Topic Detection and Tracking,TDT)是监控的有效手段之一。但是,网络论坛帖子的特点是回帖篇幅短、话题转移快,使得面向论坛的话题识别与跟踪变得异常困难。针对其特点,给出了三个TDT模型:首先给出一个基线模型;为了缓解"话题漂移"现象,提出了将一个话题表示为种子向量与后续向量的改进模型;在改进的模型上运用最新的命名实体(NE)权重调节策略。针对论坛帖子格式不规范及TDT系统对处理速度的要求,提出了一种特征提取方法。最后,在真实数据集上给出了所用TDT模型的实验结果,证实了所建模型及特征提取方法的有效性。展开更多
文摘类偏斜问题(class i mbalance problem)是数据挖掘领域的常见问题之一,人们提出了各种策略来处理这个问题.当训练样本存在类偏斜问题时,kNN分类器会将小类中的样本错分到大类,导致分类的宏F1指标下降.针对kNN存在的这个缺陷,提出了文本训练集的临界点(critical point,CP)的概念并对其性质进行了探讨,给出了求CP,CP的下近似值LA、上近似值UA的算法.之后,根据LA或UA及训练样本数对传统的kNN决策函数进行修改,这就是自适应的加权kNN文本分类.为了验证自适应的加权kNN文本分类的有效性,设计了2组实验进行对比:一组为不同的收缩因子间进行对比,可看做是与Tan的工作进行对比,同时用来证实在LA或UA上分类器的宏F1较好;另一组则是与随机重取样进行实验对比,其中,传统kNN方法作为对比的基线.实验表明,所提的自适应加权kNN文本分类优于随机重取样,使得宏F1指标明显上升.该方法有点类似于代价相关学习.
文摘互联网上充斥着用户生成文档,如论坛中的帖子。如何对这些杂乱无章的内容进行监控是安全部门所关心的重点之一,话题识别与跟踪(Topic Detection and Tracking,TDT)是监控的有效手段之一。但是,网络论坛帖子的特点是回帖篇幅短、话题转移快,使得面向论坛的话题识别与跟踪变得异常困难。针对其特点,给出了三个TDT模型:首先给出一个基线模型;为了缓解"话题漂移"现象,提出了将一个话题表示为种子向量与后续向量的改进模型;在改进的模型上运用最新的命名实体(NE)权重调节策略。针对论坛帖子格式不规范及TDT系统对处理速度的要求,提出了一种特征提取方法。最后,在真实数据集上给出了所用TDT模型的实验结果,证实了所建模型及特征提取方法的有效性。