Li3V2(PO4)3 doped with Mg2+ particles were prepared by a novel method from drying the precursor by vacuum distillation,then two steps ball-milling and two steps sintering it.The particle size,structure and morphology ...Li3V2(PO4)3 doped with Mg2+ particles were prepared by a novel method from drying the precursor by vacuum distillation,then two steps ball-milling and two steps sintering it.The particle size,structure and morphology of samples were characterized by and particle size distribution(PSD),X-ray diffraction(XRD),scanning electron microscopy(SEM).Electrochemical behaviors were characterized by galvanostatic charge/discharge and cyclic voltammetry.The results showed that the particle size of products was increased by adding small amount of Mg in Li3V2(PO4)3,but the crystal structure not changed comparing with Li3V2(PO4)3 without Mg2+.The sample with nMg:nLi=0.025 showed better performances in terms of the specific discharge capacity and cycle stability.The improved electrochemical properties of the(Li0.95Mg0.025)3V2(PO4)3 samples were attributed to the better electronic conductivity.展开更多
LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantl...LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantly improved compared with LiFePO4(LFP) and Li3V2(PO4)3(LVP),and it was also much better than that of the ball-milled LiFePO4-Li3V2(PO4)3(P-LFVP).C-LFVP and P-LFVP both had four REDOX peaks(voltage plateaus),which coincided with that of LFP and LVP.Some new trace substances were found in C-LFVP which had more perfect morphology,this was responsible for the better electrochemical performance of C-LFVP than P-LFVP.展开更多
以固相法制备出了磷酸亚铁锂-磷酸钒锂复合正极材料。采用X-射线衍射仪(XRD)、电子扫面电镜(SEM)、激光粒度分析仪、碳硫分析仪以及X-光电子能谱仪等对制备出的复合材料进行表征,发现该材料以磷酸亚铁锂和磷酸钒锂的晶形结构为主,其中...以固相法制备出了磷酸亚铁锂-磷酸钒锂复合正极材料。采用X-射线衍射仪(XRD)、电子扫面电镜(SEM)、激光粒度分析仪、碳硫分析仪以及X-光电子能谱仪等对制备出的复合材料进行表征,发现该材料以磷酸亚铁锂和磷酸钒锂的晶形结构为主,其中有少量的杂质成分;该材料颗粒粒度较细、粒度分布窄且均匀,颗粒表面光滑、碳包裹状况良好,同其它方法制备的复合材料比较在碳含量差不多的情况下具有较优的导电率。对材料进行了电化学性能表征认为该材料的电化学性能比较优异,0.1 C放电容量达到190 mA h g 1以上,10 C可以达到120 mA h g 1,20 C放电容量仍有85 mA h g 1且循环稳定性均较好;1 C进行1000次循环之后仍然保持120 mA h g 1的容量,具有较高的实用价值。展开更多
采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结...采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结果表明,该方法制备的材料具有良好的α-Na Fe O2型层状结构(R3m(166)),一次粒径平均大小为157 nm,二次颗粒成球形.同传统碳酸盐制备得到的材料相比,该材料具备良好的倍率性能和循环性能,在2.7-4.3 V电压范围内,0.1C(1.0C=180 m A?g-1)倍率下,首次放电比容量为156.4m Ah?g-1,库仑效率为81.9%.在较高倍率下,即0.5C、5.0C和20C时,其放电比容量分别为136.9、111.3、81.3m Ah?g-1.在1C倍率下100次循环容量保持率为92.9%,高于传统共沉淀法得到的材料(87.0%).展开更多
采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料...采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。展开更多
文摘Li3V2(PO4)3 doped with Mg2+ particles were prepared by a novel method from drying the precursor by vacuum distillation,then two steps ball-milling and two steps sintering it.The particle size,structure and morphology of samples were characterized by and particle size distribution(PSD),X-ray diffraction(XRD),scanning electron microscopy(SEM).Electrochemical behaviors were characterized by galvanostatic charge/discharge and cyclic voltammetry.The results showed that the particle size of products was increased by adding small amount of Mg in Li3V2(PO4)3,but the crystal structure not changed comparing with Li3V2(PO4)3 without Mg2+.The sample with nMg:nLi=0.025 showed better performances in terms of the specific discharge capacity and cycle stability.The improved electrochemical properties of the(Li0.95Mg0.025)3V2(PO4)3 samples were attributed to the better electronic conductivity.
基金Project (2007BAQ01055) supported by the National Key Technology R&D Programs of ChinaProject (50574063) supported by theNational Natural Science Foundation of China
文摘LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantly improved compared with LiFePO4(LFP) and Li3V2(PO4)3(LVP),and it was also much better than that of the ball-milled LiFePO4-Li3V2(PO4)3(P-LFVP).C-LFVP and P-LFVP both had four REDOX peaks(voltage plateaus),which coincided with that of LFP and LVP.Some new trace substances were found in C-LFVP which had more perfect morphology,this was responsible for the better electrochemical performance of C-LFVP than P-LFVP.
文摘以固相法制备出了磷酸亚铁锂-磷酸钒锂复合正极材料。采用X-射线衍射仪(XRD)、电子扫面电镜(SEM)、激光粒度分析仪、碳硫分析仪以及X-光电子能谱仪等对制备出的复合材料进行表征,发现该材料以磷酸亚铁锂和磷酸钒锂的晶形结构为主,其中有少量的杂质成分;该材料颗粒粒度较细、粒度分布窄且均匀,颗粒表面光滑、碳包裹状况良好,同其它方法制备的复合材料比较在碳含量差不多的情况下具有较优的导电率。对材料进行了电化学性能表征认为该材料的电化学性能比较优异,0.1 C放电容量达到190 mA h g 1以上,10 C可以达到120 mA h g 1,20 C放电容量仍有85 mA h g 1且循环稳定性均较好;1 C进行1000次循环之后仍然保持120 mA h g 1的容量,具有较高的实用价值。
文摘采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征.结果表明,该方法制备的材料具有良好的α-Na Fe O2型层状结构(R3m(166)),一次粒径平均大小为157 nm,二次颗粒成球形.同传统碳酸盐制备得到的材料相比,该材料具备良好的倍率性能和循环性能,在2.7-4.3 V电压范围内,0.1C(1.0C=180 m A?g-1)倍率下,首次放电比容量为156.4m Ah?g-1,库仑效率为81.9%.在较高倍率下,即0.5C、5.0C和20C时,其放电比容量分别为136.9、111.3、81.3m Ah?g-1.在1C倍率下100次循环容量保持率为92.9%,高于传统共沉淀法得到的材料(87.0%).
文摘采用碳酸盐共沉淀-高温固相法制备了一系列表面碳包覆改性(w=1.0%,2.0%,3.0%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)和恒电流充放电测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,碳成功地包覆在了材料颗粒的表面,碳包覆改性后的材料具有良好的α-Na Fe O2结构(空间群:R3m),且随着包碳量的增加,一次颗粒平均尺寸逐渐增大(从177 nm增至209 nm)。表面的无定形碳层可以提高材料的电子导电率,减少电极材料与电解液的副反应,故而碳包覆材料的电化学性能都有了一定程度提升。包覆碳量为2.0%的样品高倍率和长循环性能最好,在2.7~4.3 V,1C下循环100次后,容量保持率为93%;在0.1C、0.2C、0.5C、1C、3C、5C、10C和20C时的放电比容量分别为:155、148、145、138、127、116、104和96 m Ah·g-1。在超高倍率50C(9 A·g-1)时,其放电比容量还能达到62 m Ah·g-1(原始LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料仅为30 m Ah·g-1),倍率性能十分优异。