基于超声耦合Fenton技术,以剩余污泥为载体,同时将污泥活化脱水和金属负载过程整合,成功制备出一种高效稳定的非均相Fenton催化剂,对其结构和性能进行了表征,并探究了所制备催化剂对亚甲基蓝(MB)模拟废水的降解行为。结果表明,Fe元素能...基于超声耦合Fenton技术,以剩余污泥为载体,同时将污泥活化脱水和金属负载过程整合,成功制备出一种高效稳定的非均相Fenton催化剂,对其结构和性能进行了表征,并探究了所制备催化剂对亚甲基蓝(MB)模拟废水的降解行为。结果表明,Fe元素能有效掺杂于污泥中,并在主要以Fe2O3的形式存在,且负载铁元素和载体中二氧化硅间形成了Si-O-Fe键,保证了催化的稳定性。在初始pH为4,反应时间80 min,H2O2投加量为4 m L/L,催化剂用量0.5 g/L的优化降解条件下,催化剂对MB的降解率可达98.7%;且重复利用5次后仍能保持较好的循环稳定性。体系中H2O2可以产生具有强氧化性的·OH,作用于吸附在催化剂表面的MB生成反应中间产物,后进一步被降解为CO2和H2O。展开更多
文摘基于超声耦合Fenton技术,以剩余污泥为载体,同时将污泥活化脱水和金属负载过程整合,成功制备出一种高效稳定的非均相Fenton催化剂,对其结构和性能进行了表征,并探究了所制备催化剂对亚甲基蓝(MB)模拟废水的降解行为。结果表明,Fe元素能有效掺杂于污泥中,并在主要以Fe2O3的形式存在,且负载铁元素和载体中二氧化硅间形成了Si-O-Fe键,保证了催化的稳定性。在初始pH为4,反应时间80 min,H2O2投加量为4 m L/L,催化剂用量0.5 g/L的优化降解条件下,催化剂对MB的降解率可达98.7%;且重复利用5次后仍能保持较好的循环稳定性。体系中H2O2可以产生具有强氧化性的·OH,作用于吸附在催化剂表面的MB生成反应中间产物,后进一步被降解为CO2和H2O。