-
题名基于文本分析的在线课程画像研究
被引量:1
- 1
-
-
作者
龚雪敏
罗凌
郭育研
杨露
-
机构
重庆师范大学计算机与信息科学学院
-
出处
《情报探索》
2024年第6期64-71,共8页
-
基金
重庆市高等教育学会“新工科背景下程序设计类课程教学创新与课程数字化实践研究”(项目编号:cqgj2305B)
2023年度重庆师范大学基础教育研究专项项目“基于特征融合的师生互动行为模型构建及应用研究”(项目编号:23XJY03)
2022年重庆师范大学智慧教育研究院专项课题“基于学习者画像的个性化推荐系统构建”(项目编号:YZH22007)成果之一。
-
文摘
[目的/意义]在“互联网+教育”的时代,网络课程丰富,类型众多,学习者难以快速找到适合的在线课程。传统在线课程简介无法提供适配性引导,而课程画像能描述课程整体定义,满足学习者差异化课程适配需求。[方法/过程]基于文本分析建立相关语言模型,构建在线课程画像。以学习者在线评论文本作为数据集,从课程基本信息、联合主题模型、情感判别三个维度构建课程画像的概念模型。联合主题模型先通过基于词向量的Word2Vec算法计算词语之间的相关性,构建初始相似词库;接下来结合K-means文本聚类算法从两个维度提取评论主题;最后利用ROST_CM6软件进行评论文本情感判别并解析语义网络,数据可视化后得到课程画像。[结果/结论]最终画像能清晰呈现学习者视角的课程描述,促进整体学习效率。
-
关键词
课程画像
联合主题模型
在线课程
K均值聚类算法
-
Keywords
course portrait
joint topic model
online course
K-mean clustering algorithm
-
分类号
G434
[文化科学—教育技术学]
-