First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the in...First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the influence of simultaneous cleaning of two mirrors on mirror cleaning efficiency and uniformity,experiments involving single-mirror cleaning and dual-mirror cleaning were conducted using RF capacitively coupled plasma in the laboratory.For the test and simultaneous cleaning of two mirrors,the FM and second mirror(SM),both measuring 110 mm×80 mm,were placed inside the first mirror unit(FMU).They were composed of 16 mirror samples,each with a dimension of 27.5 mm×20 mm.These mirror samples consist of a titanium-zirconium-molybdenum alloy substrate,a 500 nm Mo intermediate layer and a 30 nm Al_(2)O_(3) surface coating as a proxy for Be impurities.The cleaning of a single first mirror(SFM)and the simultaneous cleaning of the FM and SM(DFM and DSM)lasted for 9 h using Ar plasma at a pressure of 1 Pa.The total reflectivity of mirror samples on the DSM did not fully recover and varied with location,with a self-bias of−140 V.With a self-bias of−300 V,the total reflectivity of mirror samples on the SFM and DFM was fully recovered.The energy dispersive spectrometer results demonstrated that the Al_(2)O_(3) coating had been completely removed from these mirror samples.However,the mass loss of each mirror sample on the SFM and DFM before and after cleaning varied depending on its location,with higher mass loss observed for mirror samples located in the corners and lower loss for those in the center.Compared with SM cleaning,the simultaneous cleaning of two mirrors reduced the difference between the highest and lowest mass loss.Furthermore,this mass loss for the mirror samples of the DFM facing the DSM was increased.This indicated that mirror samples cleaned face to face in the FMU simultaneously could influence each other,highlighting the need for special attention in future studies.展开更多
In order to investigate the effect of aperture geometry on deposition mitigation, stainless steel (SS) first mirrors (FMs) were fixed on the holders of protective aperture geometry with different depth-diameter ra...In order to investigate the effect of aperture geometry on deposition mitigation, stainless steel (SS) first mirrors (FMs) were fixed on the holders of protective aperture geometry with different depth-diameter ratios (DDRs) and exposed in the deposition dominated environment of EAST. A baffle was used during the wall conditioning. The surface properties and reflectivity of the FMs were characterized before and after exposure. It is shown that using aperture geometry and a baffle can effectively mitigate the impurities deposition. The degradation of the surface and specular reflectivity of the FMs is reduced with the increase of DDRs in the range of 0 to 2. The main contaminated elements in a low-Z and high-Z mixed wall materials environment were still carbon and oxygen.展开更多
The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The depositio...The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.展开更多
In the Experimental Advanced Superconducting Tokamak(EAST),the reflectivity of the charge exchange recombination spectroscopy(CXRS)first mirror(FM)was dramatically dropped down to 20%of the original value after the op...In the Experimental Advanced Superconducting Tokamak(EAST),the reflectivity of the charge exchange recombination spectroscopy(CXRS)first mirror(FM)was dramatically dropped down to 20%of the original value after the operation of two EAST experimental campaigns from 2014-2015,leading to degradation of the signal intensity of the CXRS diagnostic to an unacceptably low level.The radio frequency(RF)plasma cleaning of the CXRS FM with a dimension of 303×81×76 mm3 and a small curvature of 0.008 mm-1 was performed to remove deposits to recover the reflectivity.After 168 h cleaning by RF plasma,the maximum specular reflectivity of the FM could reach 92%of the original value at 532 nm,making the cleaned CXRS FM eligible to be reused for the CXRS diagnostic in the 2016 EAST campaign.Dedicated tests of sputtering polished mirror samples were performed to explore the cleaning uniformity and possible damage to the mirror surface.The specular reflectivity did not show obvious dependence on locations along the surface with the same cleaning time.The measured surface roughness gradually increased with sputtering time.The reflectivity remained almost unchanged regardless of different sputtering times and locations,indicating negligible damage to the FM surface even after 100 h sputtering.The recontaminated CXRS FM in the 2016 EAST campaign was firstly cleaned for 81 h,and the least reflectivity recovery for areas with relatively thick deposits was only 40%.After continuing cleaning to 147 h,redeposition of the sputtered residual deposits on the FM surface was observed.In the future for in situ cleaning of the FMs in EAST and ITER,deposits should be removed timely when they are very thin taking into account a very long cleaning time and presumable redeposition of thick and nonuniform deposits.展开更多
Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainles...Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were fixed on a holder at an angle of 45° with respect to the horizontal plane and set at different locations with different connection lengths along the magnetic field. The optical reflectivity of the first mirror was measured by a spectrophotometer before and after plasma exposure. It was found that the surface morphology and specular reflectivity of the mirror samples after the exposure were different with respect to the different distances from the mirror surface to the last closed flux surface (LCFS) of the plasma in the tokamak. It was also found that shortening the connection length before the mirror surface would weaken the influence of the plasma erosion and impurity deposition on the mirror surface. In order to maintain the optical characteristics of the mirror surface, it is necessary to adopt the in-situ cleaning and mirror protection techniques.展开更多
Steady high-flux helium(He)plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum(Mo)surface.Enhanced hydrogen(H)pulsed plasma in a w...Steady high-flux helium(He)plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum(Mo)surface.Enhanced hydrogen(H)pulsed plasma in a wide power density range of 12 MW/m^(2)-35 MW/m^(2)is subsequently used to bombard the fuzzy Mo,thereby simulating the damage of edge localized mode(ELM)to fuzz.The comparisons of surface morphologies,crystalline structures,and optical reflectivity between the original Mo and the Mo treated with various He^(+)energy and transient power densities are performed.With the increase of He ion energy,the Mo nano-fuzz evolved density is enlarged due to the decrease of filament diameter and optical reflectivity.The fuzz-enhanced He release should be the consequence of crystalline growth and the lattice shrinkage inside the Mo-irradiated layers(^(2)00 nm).The fuzz induced by lower energy experiences more severe melting damage and dust release under the condition of the identical transient H plasma-bombardment.The H and He are less likely to be trapped due to aggravated melting evidenced by the enhanced crystalline size and distinct lattice shrinkage.As the transient power density rises,the thermal effect is enhanced,thereby causing the fuzz melting loss to aggravate and finally to completely disappear when the power density exceeds 21 MW/m^(2).Irreversible grain expansion results in huge tensile stress,leading to the observable brittle cracking.The effects of transient thermal load and He ion energy play a crucial role in etching Mo fuzz during ELM transient events.展开更多
Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by re...Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.展开更多
Six-layered W-TiC/Cu functionally graded materials were fabricated by resistance sintering under ultra-high pressure and exposed in the edge plasma of HT-7 tokamak. Microstruc- ture morphologies show that the TiC part...Six-layered W-TiC/Cu functionally graded materials were fabricated by resistance sintering under ultra-high pressure and exposed in the edge plasma of HT-7 tokamak. Microstruc- ture morphologies show that the TiC particles distribute homogeneously in the W matrix, strength- ening the grain boundary, while gradient layers provide a good compositional transition from W- TiC to Cu. After about 360 shots in the HT-7 tokamak, clear surface modification can be observed after plasma exposure, and the addition of nano TiC particles is beneficial to the improvement of plasma loads resistance of W.展开更多
Dust presented in experimental advanced superconducting tokamak(EAST)with mixed plasmafacing materials has been collected and characterized for the first time.Dust at different positions in the vessel was collected by...Dust presented in experimental advanced superconducting tokamak(EAST)with mixed plasmafacing materials has been collected and characterized for the first time.Dust at different positions in the vessel was collected by vacuum cleaner after the first experimental campaign in 2019.The shape,composition,and size of dust particles have been analyzed using different methods.About 80%of the total number of dust particles have size between 20 and 80μm,and most of dust particles are spherical,while schistose shape,columnar and irregular shape were also found.With the help of energy-dispersive x-ray spectroscopy different elements of dust have been identified,which is generally consistent with the different plasma-facing components in EAST.Both x-ray fluorescence and inductively coupled plasma emission spectrometer are complementary methods for measuring the dust composition quantitatively.It was found that the major components of dust were lithium dust in the form of lithium carbonate and lithium hydroxide,which is due to the routine lithium wall conditioning during EAST operation.展开更多
Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, i...Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, is conducted by finite element analysis (FEA). It is shown that the failure of copper softening is likely to occur at the W/Cu compliant interlayer under a typical quasi-stationary heat load and the surface failure of plastic yield damage to occur at the surface edge under a transient heat flux. In addition, the critical transient heat flux for melting is approximately 0.75 MJ/m2 for about 0.5 ms. All these results are useful for the design of the plasma facing components (PFCs) and the plasma operation in the future.展开更多
First mirrors(FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, great...First mirrors(FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, greatly influencing the safe operation of corresponding diagnostics.Repetitive cleaning is expected to provide a solution to the frequent replacement of contaminated FMs, thus prolonging their lifetimes. Three repetitive cleaning cycles using radio frequency plasma were applied to stainless steel(SS) FM samples, to evaluate the change of the mirrors' optical properties and morphology during each cycle. Amorphous carbon films were deposited on mirror surfaces under identical conditions in three cycles. In three cycles with identical cleaning parameters, the total reflectivity was restored at up to 95%. Nevertheless, with successive cleaning cycles, the FM surfaces gradually appeared to roughen due to damage to the grain boundaries. Correspondingly, the diffuse reflectivity increased from a few percent to 20%and 27% after the second and third cycles. After optimizing the cleaning parameters of the second and third cycles, the roughness showed a significant decrease, and simultaneously the increase of diffuse reflectivity was remarkably improved.展开更多
基金supported by the National Key R&D Project of China(No.2022YFE03030000)National Natural Science Foundation of China(Nos.11975269,12275306 and 12075279)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2022452)the Anhui Provincial Natural Science Foundation(No.2208085J40)the CASHIPS Director’s Fund(Nos.YZJJQY202302 and BJPY2023B03)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘First mirror(FM)cleaning,using radio frequency(RF)plasma,has been proposed to recover FM reflectivity in nuclear fusion reactors such as the International Thermonuclear Experimental Reactor(ITER).To investigate the influence of simultaneous cleaning of two mirrors on mirror cleaning efficiency and uniformity,experiments involving single-mirror cleaning and dual-mirror cleaning were conducted using RF capacitively coupled plasma in the laboratory.For the test and simultaneous cleaning of two mirrors,the FM and second mirror(SM),both measuring 110 mm×80 mm,were placed inside the first mirror unit(FMU).They were composed of 16 mirror samples,each with a dimension of 27.5 mm×20 mm.These mirror samples consist of a titanium-zirconium-molybdenum alloy substrate,a 500 nm Mo intermediate layer and a 30 nm Al_(2)O_(3) surface coating as a proxy for Be impurities.The cleaning of a single first mirror(SFM)and the simultaneous cleaning of the FM and SM(DFM and DSM)lasted for 9 h using Ar plasma at a pressure of 1 Pa.The total reflectivity of mirror samples on the DSM did not fully recover and varied with location,with a self-bias of−140 V.With a self-bias of−300 V,the total reflectivity of mirror samples on the SFM and DFM was fully recovered.The energy dispersive spectrometer results demonstrated that the Al_(2)O_(3) coating had been completely removed from these mirror samples.However,the mass loss of each mirror sample on the SFM and DFM before and after cleaning varied depending on its location,with higher mass loss observed for mirror samples located in the corners and lower loss for those in the center.Compared with SM cleaning,the simultaneous cleaning of two mirrors reduced the difference between the highest and lowest mass loss.Furthermore,this mass loss for the mirror samples of the DFM facing the DSM was increased.This indicated that mirror samples cleaned face to face in the FMU simultaneously could influence each other,highlighting the need for special attention in future studies.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB105003)National Natural Science Foundation of China(No.11175205)
文摘In order to investigate the effect of aperture geometry on deposition mitigation, stainless steel (SS) first mirrors (FMs) were fixed on the holders of protective aperture geometry with different depth-diameter ratios (DDRs) and exposed in the deposition dominated environment of EAST. A baffle was used during the wall conditioning. The surface properties and reflectivity of the FMs were characterized before and after exposure. It is shown that using aperture geometry and a baffle can effectively mitigate the impurities deposition. The degradation of the surface and specular reflectivity of the FMs is reduced with the increase of DDRs in the range of 0 to 2. The main contaminated elements in a low-Z and high-Z mixed wall materials environment were still carbon and oxygen.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB105003)National Natural Science Foundation of China(No.11175205)
文摘The stainless steel (SS) first mirror pre-exposed in the deposition-dominated envi- ronment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.
基金National Natural Science Foundation of China(Nos.11975269,11905252,11675218,11675219,11775260,11861131010,11875230)the National Key R&D Program of China(Nos.2017YFA0402500 and 2017YFE0301300)。
文摘In the Experimental Advanced Superconducting Tokamak(EAST),the reflectivity of the charge exchange recombination spectroscopy(CXRS)first mirror(FM)was dramatically dropped down to 20%of the original value after the operation of two EAST experimental campaigns from 2014-2015,leading to degradation of the signal intensity of the CXRS diagnostic to an unacceptably low level.The radio frequency(RF)plasma cleaning of the CXRS FM with a dimension of 303×81×76 mm3 and a small curvature of 0.008 mm-1 was performed to remove deposits to recover the reflectivity.After 168 h cleaning by RF plasma,the maximum specular reflectivity of the FM could reach 92%of the original value at 532 nm,making the cleaned CXRS FM eligible to be reused for the CXRS diagnostic in the 2016 EAST campaign.Dedicated tests of sputtering polished mirror samples were performed to explore the cleaning uniformity and possible damage to the mirror surface.The specular reflectivity did not show obvious dependence on locations along the surface with the same cleaning time.The measured surface roughness gradually increased with sputtering time.The reflectivity remained almost unchanged regardless of different sputtering times and locations,indicating negligible damage to the FM surface even after 100 h sputtering.The recontaminated CXRS FM in the 2016 EAST campaign was firstly cleaned for 81 h,and the least reflectivity recovery for areas with relatively thick deposits was only 40%.After continuing cleaning to 147 h,redeposition of the sputtered residual deposits on the FM surface was observed.In the future for in situ cleaning of the FMs in EAST and ITER,deposits should be removed timely when they are very thin taking into account a very long cleaning time and presumable redeposition of thick and nonuniform deposits.
基金supported by National Natural Science Foundation of China(No.10775138)
文摘Abstract Dedicated experiments in the HT-7 tokamak were performed to investigate the in- fluence of erosion and deposition on the mirror samples. The first mirror (FM) samples made of polyerystalline (PC) stainless steel (SS), molybdenum (Mo) and tungsten (W) were fixed on a holder at an angle of 45° with respect to the horizontal plane and set at different locations with different connection lengths along the magnetic field. The optical reflectivity of the first mirror was measured by a spectrophotometer before and after plasma exposure. It was found that the surface morphology and specular reflectivity of the mirror samples after the exposure were different with respect to the different distances from the mirror surface to the last closed flux surface (LCFS) of the plasma in the tokamak. It was also found that shortening the connection length before the mirror surface would weaken the influence of the plasma erosion and impurity deposition on the mirror surface. In order to maintain the optical characteristics of the mirror surface, it is necessary to adopt the in-situ cleaning and mirror protection techniques.
基金Project supported by the Sichuan Provincial Science and Technology Program,China(Grant Nos.2021YFSY0015and 2021YJ0510)the China Postdoctoral Science Foundation(Grant No.2019M663487)the National Natural Science Foundation of China(Grant No.11905151)。
文摘Steady high-flux helium(He)plasma with energy ranging from 50 eV to 90 eV is used to fabricate a fiber-form nanostructure called fuzz on a polycrystalline molybdenum(Mo)surface.Enhanced hydrogen(H)pulsed plasma in a wide power density range of 12 MW/m^(2)-35 MW/m^(2)is subsequently used to bombard the fuzzy Mo,thereby simulating the damage of edge localized mode(ELM)to fuzz.The comparisons of surface morphologies,crystalline structures,and optical reflectivity between the original Mo and the Mo treated with various He^(+)energy and transient power densities are performed.With the increase of He ion energy,the Mo nano-fuzz evolved density is enlarged due to the decrease of filament diameter and optical reflectivity.The fuzz-enhanced He release should be the consequence of crystalline growth and the lattice shrinkage inside the Mo-irradiated layers(^(2)00 nm).The fuzz induced by lower energy experiences more severe melting damage and dust release under the condition of the identical transient H plasma-bombardment.The H and He are less likely to be trapped due to aggravated melting evidenced by the enhanced crystalline size and distinct lattice shrinkage.As the transient power density rises,the thermal effect is enhanced,thereby causing the fuzz melting loss to aggravate and finally to completely disappear when the power density exceeds 21 MW/m^(2).Irreversible grain expansion results in huge tensile stress,leading to the observable brittle cracking.The effects of transient thermal load and He ion energy play a crucial role in etching Mo fuzz during ELM transient events.
基金supported by the Key Project of Chinese Academy of Sciences(No.KJCX2-YW-N35)National Natural Science Foundation of China(No.11175205)
文摘Tests of the candidate plasma facing materials(PFMs) used in experimental fusion devices are essential due to the direct influence of in-situ plasma loading.A type of ultrafine grained(UFG) tungsten sintered by resistance sintering under ultra-high pressure(RSUHP) method has been exposed in the edge plasma of the HT-7 tokamak to investigate its performance under plasma loading.Under cychc edge plasma loading,the UFG tungsten develops both macro and micro cracks.The macro cracks are attributed to the low temperature brittleness of the tungsten material itself,while the micro cracks are generated from local intense power flux deposition.
基金supported by National Natural Science Foundation of China (No.11175205)
文摘Six-layered W-TiC/Cu functionally graded materials were fabricated by resistance sintering under ultra-high pressure and exposed in the edge plasma of HT-7 tokamak. Microstruc- ture morphologies show that the TiC particles distribute homogeneously in the W matrix, strength- ening the grain boundary, while gradient layers provide a good compositional transition from W- TiC to Cu. After about 360 shots in the HT-7 tokamak, clear surface modification can be observed after plasma exposure, and the addition of nano TiC particles is beneficial to the improvement of plasma loads resistance of W.
基金supported by National Natural Science Foundation of China(Nos.12022511,11861131010 and 12075279)the National Key Research and Development Program of China(Nos.2017YFE0301300 and 2017YFA0402500)+1 种基金the CASHIPS Director’s Fund(No.BJPY2019B01)the Key Research Program of Frontier Sciences of CAS(No.ZDBS-LY-SLH010).
文摘Dust presented in experimental advanced superconducting tokamak(EAST)with mixed plasmafacing materials has been collected and characterized for the first time.Dust at different positions in the vessel was collected by vacuum cleaner after the first experimental campaign in 2019.The shape,composition,and size of dust particles have been analyzed using different methods.About 80%of the total number of dust particles have size between 20 and 80μm,and most of dust particles are spherical,while schistose shape,columnar and irregular shape were also found.With the help of energy-dispersive x-ray spectroscopy different elements of dust have been identified,which is generally consistent with the different plasma-facing components in EAST.Both x-ray fluorescence and inductively coupled plasma emission spectrometer are complementary methods for measuring the dust composition quantitatively.It was found that the major components of dust were lithium dust in the form of lithium carbonate and lithium hydroxide,which is due to the routine lithium wall conditioning during EAST operation.
基金supported by the Key Project of Chinese Academy of Sciences(No.KJCX2-YW-N35)National Natural Science Foundation of China(Nos.10775138,11175205)
文摘Thermo-mechanical simulation of the vacuum plasma spraying tungsten (VPS-W) coating on the actively cooled CuCrZr substrate under the relevant quasi-stationary heat load and transient heat flux for tokamak device, is conducted by finite element analysis (FEA). It is shown that the failure of copper softening is likely to occur at the W/Cu compliant interlayer under a typical quasi-stationary heat load and the surface failure of plastic yield damage to occur at the surface edge under a transient heat flux. In addition, the critical transient heat flux for melting is approximately 0.75 MJ/m2 for about 0.5 ms. All these results are useful for the design of the plasma facing components (PFCs) and the plasma operation in the future.
基金supported by National Magnetic Confinement Fusion Science Program of China under Contract Nos. 2013GB105003 and 2013GB107004National Natural Science Foundation of China under Contract Nos. 11475218, 11505231, 11375010 and 11675218
文摘First mirrors(FMs) are crucial components of optical diagnostic systems in present-day tokamaks and future fusion reactors. Their lifetimes should be extremely limited due to their proximity to burning plasma, greatly influencing the safe operation of corresponding diagnostics.Repetitive cleaning is expected to provide a solution to the frequent replacement of contaminated FMs, thus prolonging their lifetimes. Three repetitive cleaning cycles using radio frequency plasma were applied to stainless steel(SS) FM samples, to evaluate the change of the mirrors' optical properties and morphology during each cycle. Amorphous carbon films were deposited on mirror surfaces under identical conditions in three cycles. In three cycles with identical cleaning parameters, the total reflectivity was restored at up to 95%. Nevertheless, with successive cleaning cycles, the FM surfaces gradually appeared to roughen due to damage to the grain boundaries. Correspondingly, the diffuse reflectivity increased from a few percent to 20%and 27% after the second and third cycles. After optimizing the cleaning parameters of the second and third cycles, the roughness showed a significant decrease, and simultaneously the increase of diffuse reflectivity was remarkably improved.