In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the H...In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the Hamilton canonical equations with time delay are established. Secondly, according to the invariance of the function under the infinitesimal transformations of the group, the basic formulas for the variational of the Hamilton action with time delay are discussed, the definitions and the criteria of the Noether symmetric transformations and quasi-symmetric transformations with time delay are obtained, and the relationship between the Noether symmetry and the conserved quantity with time delay is studied. In addition, examples are given to illustrate the application of the results.展开更多
The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized ...The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.展开更多
The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals...The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227)the Innovation Program for Scientific Research in Higher Education Institution of Jiangsu Province,China(Grant No.CXLX11 0961)the Innovation Program for Scientific Research of Suzhou University of Science and Technology,China(Grant No.SKCX12S 039)
文摘In this paper, the Noether symmetries and the conserved quantities for a Hamilton system with time delay are dis-cussed. Firstly, the variational principles with time delay for the Hamilton system are given, and the Hamilton canonical equations with time delay are established. Secondly, according to the invariance of the function under the infinitesimal transformations of the group, the basic formulas for the variational of the Hamilton action with time delay are discussed, the definitions and the criteria of the Noether symmetric transformations and quasi-symmetric transformations with time delay are obtained, and the relationship between the Noether symmetry and the conserved quantity with time delay is studied. In addition, examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Graduate Student of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.