A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With itera...A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With iteration methods, the local existence of the solutions is obtained. Using the method of a priori estimates, the global existence of the solution is proved.展开更多
Zakharov equations have a fairly abundant physical background. In this paper, the existence of the weak global solution for quantum Zakharov equations for the plasmas model is obtained by means of the Arzela-Ascoli th...Zakharov equations have a fairly abundant physical background. In this paper, the existence of the weak global solution for quantum Zakharov equations for the plasmas model is obtained by means of the Arzela-Ascoli theorem, Faedo-Galerkin methods, and compactness property.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 10871075 and 10926101)the Natural Science Foundation of Guangdong Province of China(Nos. 9451064201003736 and 9151064201000040)
文摘A class of periodic initial value problems for two-dimensional Newton- Boussinesq equations are investigated in this paper. The Newton-Boussinesq equations are turned into the equivalent integral equations. With iteration methods, the local existence of the solutions is obtained. Using the method of a priori estimates, the global existence of the solution is proved.
基金supported by the National Natural Science Foundation of China(Nos.10871075 and 11101160)the Natural Science Foundation of Guangdong Province of China(Nos.9451064201003736 and 9151064201000040)
文摘Zakharov equations have a fairly abundant physical background. In this paper, the existence of the weak global solution for quantum Zakharov equations for the plasmas model is obtained by means of the Arzela-Ascoli theorem, Faedo-Galerkin methods, and compactness property.