多天线技术通过在收发端部署天线阵列,从而提供额外的空间自由度(degrees of freedom,DoFs),大幅提升了无线通信的可靠性与有效性。与此同时,多天线技术应用于雷达感知领域,实现了空间角度分辨能力并提升了感知自由度,大幅增强了无线感...多天线技术通过在收发端部署天线阵列,从而提供额外的空间自由度(degrees of freedom,DoFs),大幅提升了无线通信的可靠性与有效性。与此同时,多天线技术应用于雷达感知领域,实现了空间角度分辨能力并提升了感知自由度,大幅增强了无线感知性能。然而,无线通信与雷达感知领域在过去数十年里独立发展。因此,尽管多天线技术在这两个领域分别取得了巨大的进步,但并没有通过发挥它们的协同作用来实现深度融合。随着感知与通信的融合被确定为第六代(the sixth-generation,6G)移动通信网络的典型应用场景之一,多天线技术的发展面临新的机遇以填补上述空白。为此,本文围绕未来天线阵列规模持续扩张、阵列架构更加多样、阵列形态更为灵活等发展趋势,对面向6G通信感知一体化的多天线技术进行综述。首先介绍未来多天线的不同架构类型,包括以传统紧凑式阵列和新兴稀疏阵列为代表的集中式阵列架构、以无蜂窝大规模MIMO(multiple-input multiple-output)为代表的分布式天线架构,以及三维连续空间阵元位置与朝向灵活可调的可移动天线/流体天线。然后,本文将介绍基于上述天线架构的远场/近场信道建模,并进行通信与感知性能分析。最后总结不同天线架构的特点,并展望解决因天线阵列规模的持续扩展及阵列形态的灵活多变引起的信道状态信息获取困难的新思路。展开更多
针对无刷双馈风力发电系统,稳态时,采用基于空间矢量调制(Space Vector Modulation,SVM)的直接功率控制(Direct Power Control,DPC)技术。在电网电压对称跌落条件下,理论分析功率绕组磁链与控制绕组电压的关系,对于故障期间控制绕组会...针对无刷双馈风力发电系统,稳态时,采用基于空间矢量调制(Space Vector Modulation,SVM)的直接功率控制(Direct Power Control,DPC)技术。在电网电压对称跌落条件下,理论分析功率绕组磁链与控制绕组电压的关系,对于故障期间控制绕组会产生较大的过电流,严重时可能损害变流器功率器件的问题,在原有的控制方案中引入前馈控制。通过将可观测的功率绕组电流进行微分运算后得到反映控制绕组反电势的直接干扰量,将其经前馈控制器引入到控制电压的参考值端,形成一种基于前馈控制的SVM-DPC复合控制。仿真结果表明,基于功率绕组电流微分前馈控制的复合控制策略可以在一定程度上抑制控制绕组过电流,能为无刷双馈风力发电机实现低电压穿越提供参考。展开更多
文摘多天线技术通过在收发端部署天线阵列,从而提供额外的空间自由度(degrees of freedom,DoFs),大幅提升了无线通信的可靠性与有效性。与此同时,多天线技术应用于雷达感知领域,实现了空间角度分辨能力并提升了感知自由度,大幅增强了无线感知性能。然而,无线通信与雷达感知领域在过去数十年里独立发展。因此,尽管多天线技术在这两个领域分别取得了巨大的进步,但并没有通过发挥它们的协同作用来实现深度融合。随着感知与通信的融合被确定为第六代(the sixth-generation,6G)移动通信网络的典型应用场景之一,多天线技术的发展面临新的机遇以填补上述空白。为此,本文围绕未来天线阵列规模持续扩张、阵列架构更加多样、阵列形态更为灵活等发展趋势,对面向6G通信感知一体化的多天线技术进行综述。首先介绍未来多天线的不同架构类型,包括以传统紧凑式阵列和新兴稀疏阵列为代表的集中式阵列架构、以无蜂窝大规模MIMO(multiple-input multiple-output)为代表的分布式天线架构,以及三维连续空间阵元位置与朝向灵活可调的可移动天线/流体天线。然后,本文将介绍基于上述天线架构的远场/近场信道建模,并进行通信与感知性能分析。最后总结不同天线架构的特点,并展望解决因天线阵列规模的持续扩展及阵列形态的灵活多变引起的信道状态信息获取困难的新思路。
文摘针对无刷双馈风力发电系统,稳态时,采用基于空间矢量调制(Space Vector Modulation,SVM)的直接功率控制(Direct Power Control,DPC)技术。在电网电压对称跌落条件下,理论分析功率绕组磁链与控制绕组电压的关系,对于故障期间控制绕组会产生较大的过电流,严重时可能损害变流器功率器件的问题,在原有的控制方案中引入前馈控制。通过将可观测的功率绕组电流进行微分运算后得到反映控制绕组反电势的直接干扰量,将其经前馈控制器引入到控制电压的参考值端,形成一种基于前馈控制的SVM-DPC复合控制。仿真结果表明,基于功率绕组电流微分前馈控制的复合控制策略可以在一定程度上抑制控制绕组过电流,能为无刷双馈风力发电机实现低电压穿越提供参考。