We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optica...We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072219 and 11005092)
文摘We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr6dinger equation with varying coefficients. And then the dynamics of the first- and the second-order optical rogues are investigated. Finally, the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed. By properly choosing the distributed coefficients, we demonstrate analytically that rogue waves can be restrained or even be annihilated, or emerge periodically and sustain forever. We also figure out the center-of-mass motion of the rogue waves.