A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled ...A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.展开更多
The influence of the extra classical noises in seed beams on the entanglement between the signal and the idler modes of the output fields generated by a non-degenerate optical parametric amplifier operating at deampli...The influence of the extra classical noises in seed beams on the entanglement between the signal and the idler modes of the output fields generated by a non-degenerate optical parametric amplifier operating at deamplification is investigated theoretically and experimentally. With the increase of the extra classical noises in the seed beams, the correlation degree of the output entangled optical fields, which is scaled by the quantum noise limit, decreases rapidly. The experimental results axe in good agreement with the theoretical calculations.展开更多
基金Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214)the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029)the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500)the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of Chinathe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxithe Fund for Shanxi “1331 Project” Key Subjects Construction
文摘A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
基金supported by the National Natural Science Foundation of China (Grants Nos. 60736040 and 11074157)Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 60821004)the National Basic Research Program of China (Grant No. 2010CB923103)
文摘The influence of the extra classical noises in seed beams on the entanglement between the signal and the idler modes of the output fields generated by a non-degenerate optical parametric amplifier operating at deamplification is investigated theoretically and experimentally. With the increase of the extra classical noises in the seed beams, the correlation degree of the output entangled optical fields, which is scaled by the quantum noise limit, decreases rapidly. The experimental results axe in good agreement with the theoretical calculations.