在微表情识别系统中,常规的特征融合方法会引入冗余或干扰特征,因而会影响识别准确率和效率。针对上述问题,提出一种基于双支路核化群稀疏学习(Two-Branch Kernelized Groups Sparse Learning, TB-KGSL)的特征选择方法,并将其应用于微...在微表情识别系统中,常规的特征融合方法会引入冗余或干扰特征,因而会影响识别准确率和效率。针对上述问题,提出一种基于双支路核化群稀疏学习(Two-Branch Kernelized Groups Sparse Learning, TB-KGSL)的特征选择方法,并将其应用于微表情识别系统。首先,提取多个人脸区域的3个正交平面上局部二值模式(Local Binary Patterns from Three Orthogonal Planes, LBP-TOP)和多个方向上的单方向梯度直方图(Histogram of Single Direction Gradient, HSDG)两组不同类型的特征;然后,使用TB-KGSL模型从上述两组特征中分别选择有效区域的LBP-TOP特征和有效方向上的HSDG特征;最后,将选择的LBP-TOP和HSDG特征进行拼接融合,得到紧凑且可鉴别的特征,并使用基于支持向量机(Support Vector Machine, SVM)的分类器进行微表情分类。实验结果验证了TB-KGSL的可行性和有效性,并在CASME II和SMIC数据集上分别达到68.63%和75.95%的识别准确率,比基线方法分别高出5.77个百分点和15.20个百分点。展开更多
微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogo...微表情是一个人试图隐藏内心真实情感却又不由自主流露出的不易被察觉的面部表情。与一般面部表情相比,微表情最显著的特点是持续时间短、强度弱,往往难以有效识别。文中提出了一种基于LBP-TOP(Local Binary Pattern from Three Orthogonal Planes)特征和支持向量机(Support Vector Machine,SVM)分类器的微表情识别方法。首先,采用LBP-TOP算子来提取微表情特征;然后,提出一种基于ReliefF与局部线性嵌入(Locally Linear Embedding,LLE)流形学习算法相结合的特征选择算法,对提取的LBP-TOP特征向量进行降维;最后,使用径向基函数(Radial Basis Function,RBF)核的SVM分类器进行分类,将测试样本图像序列的微表情分为5类:高兴、厌恶、压抑、惊讶、其他。在CASME Ⅱ微表情数据库上采用"留一人交叉验证"(Leave-One-Subject-Out Cross Validation,LOSO-CV)的方式进行了实验,可得到58.98%的分类准确率。实验结果表明了该算法的有效性。展开更多
针对新生儿疼痛表情识别任务中由于有类别标签样本数量不足而导致分类准确率不高的问题,提出了一种基于图的半监督深度学习(Graph-based Semi-supervised Deep Learning,GSDL)方法。首先,使用训练集中少量有类别标签的样本对深度神经网...针对新生儿疼痛表情识别任务中由于有类别标签样本数量不足而导致分类准确率不高的问题,提出了一种基于图的半监督深度学习(Graph-based Semi-supervised Deep Learning,GSDL)方法。首先,使用训练集中少量有类别标签的样本对深度神经网络模型进行初步训练,得到初始模型;然后,利用初始模型提取有类别标签样本与无类别标签样本的特征向量,并使用提取的特征向量构建一个邻接矩阵,进而构建一个图,在构建的图上通过标签传播算法推测出无类别标签样本的伪标签;最后,使用所有样本及其标签对深度神经网络模型进行微调,得到最终的新生儿疼痛表情识别分类模型。在新生儿疼痛表情数据集上的实验结果表明,在使用相同数量的有类别标签样本情况下,文中提出的GSDL模型的分类准确率优于传统的有监督深度学习模型,也高于现有的半监督深度学习模型(Mean-Teachers,MT),验证了GSDL方法在新生儿疼痛表情识别中的有效性。展开更多
文摘在微表情识别系统中,常规的特征融合方法会引入冗余或干扰特征,因而会影响识别准确率和效率。针对上述问题,提出一种基于双支路核化群稀疏学习(Two-Branch Kernelized Groups Sparse Learning, TB-KGSL)的特征选择方法,并将其应用于微表情识别系统。首先,提取多个人脸区域的3个正交平面上局部二值模式(Local Binary Patterns from Three Orthogonal Planes, LBP-TOP)和多个方向上的单方向梯度直方图(Histogram of Single Direction Gradient, HSDG)两组不同类型的特征;然后,使用TB-KGSL模型从上述两组特征中分别选择有效区域的LBP-TOP特征和有效方向上的HSDG特征;最后,将选择的LBP-TOP和HSDG特征进行拼接融合,得到紧凑且可鉴别的特征,并使用基于支持向量机(Support Vector Machine, SVM)的分类器进行微表情分类。实验结果验证了TB-KGSL的可行性和有效性,并在CASME II和SMIC数据集上分别达到68.63%和75.95%的识别准确率,比基线方法分别高出5.77个百分点和15.20个百分点。
文摘针对新生儿疼痛表情识别任务中由于有类别标签样本数量不足而导致分类准确率不高的问题,提出了一种基于图的半监督深度学习(Graph-based Semi-supervised Deep Learning,GSDL)方法。首先,使用训练集中少量有类别标签的样本对深度神经网络模型进行初步训练,得到初始模型;然后,利用初始模型提取有类别标签样本与无类别标签样本的特征向量,并使用提取的特征向量构建一个邻接矩阵,进而构建一个图,在构建的图上通过标签传播算法推测出无类别标签样本的伪标签;最后,使用所有样本及其标签对深度神经网络模型进行微调,得到最终的新生儿疼痛表情识别分类模型。在新生儿疼痛表情数据集上的实验结果表明,在使用相同数量的有类别标签样本情况下,文中提出的GSDL模型的分类准确率优于传统的有监督深度学习模型,也高于现有的半监督深度学习模型(Mean-Teachers,MT),验证了GSDL方法在新生儿疼痛表情识别中的有效性。