确定性的点预测在精度上无法满足大规模光伏并网的调度需求,基于此,提出一种光伏出力区间预测方法。针对光伏功率原始数据的强波动特性,采用变分模态分解(variational model decomposition,VMD)方法将其分解为若干个子序列,并依据样本...确定性的点预测在精度上无法满足大规模光伏并网的调度需求,基于此,提出一种光伏出力区间预测方法。针对光伏功率原始数据的强波动特性,采用变分模态分解(variational model decomposition,VMD)方法将其分解为若干个子序列,并依据样本熵理论,将复杂度较高的子序列重组为波动分量S,采用高斯过程回归(Gaussian process regression,GPR)法对分量S进行预测,得到其波动区间。考虑到GPR本身固有的缺陷,采用纵横交叉(crisscross optimization,CSO)算法对它的超参数寻优过程进行改进,而复杂度相对较低的其他VMD子序列代表光伏出力稳定分量,因此,采用支持向量机(support vector machine,SVM)法直接对它们进行确定性预测,最后通过重组各分量的预测值,得出光伏出力的区间预测结果。展开更多
文摘确定性的点预测在精度上无法满足大规模光伏并网的调度需求,基于此,提出一种光伏出力区间预测方法。针对光伏功率原始数据的强波动特性,采用变分模态分解(variational model decomposition,VMD)方法将其分解为若干个子序列,并依据样本熵理论,将复杂度较高的子序列重组为波动分量S,采用高斯过程回归(Gaussian process regression,GPR)法对分量S进行预测,得到其波动区间。考虑到GPR本身固有的缺陷,采用纵横交叉(crisscross optimization,CSO)算法对它的超参数寻优过程进行改进,而复杂度相对较低的其他VMD子序列代表光伏出力稳定分量,因此,采用支持向量机(support vector machine,SVM)法直接对它们进行确定性预测,最后通过重组各分量的预测值,得出光伏出力的区间预测结果。