The unique in-plane and out-of-plane anisotropy of α-MoO_(3) has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, ...The unique in-plane and out-of-plane anisotropy of α-MoO_(3) has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, leaving its properties and applications in the visible and near-infrared light spectrum less explored. This study advances the understanding of waveguiding properties of α-MoO_(3) by near-field imaging of the waveguide modes along the [100] and [001] directions of α-MoO_(3) flakes at 633 nm and 785 nm. We investigate the effects of flake thickness and documented the modes' dispersion relationships, which is crucial for tailoring the optical responses of α-MoO_(3) in device applications. Our findings enhance the field of research into α-MoO_(3), highlighting its utility in fabricating next-generation optoelectronic devices due to its unique optically anisotropic waveguide.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1203500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the CAS Youth Interdisciplinary Team。
文摘The unique in-plane and out-of-plane anisotropy of α-MoO_(3) has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, leaving its properties and applications in the visible and near-infrared light spectrum less explored. This study advances the understanding of waveguiding properties of α-MoO_(3) by near-field imaging of the waveguide modes along the [100] and [001] directions of α-MoO_(3) flakes at 633 nm and 785 nm. We investigate the effects of flake thickness and documented the modes' dispersion relationships, which is crucial for tailoring the optical responses of α-MoO_(3) in device applications. Our findings enhance the field of research into α-MoO_(3), highlighting its utility in fabricating next-generation optoelectronic devices due to its unique optically anisotropic waveguide.