We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple twoand four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on th...We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple twoand four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on the diamond model, precisely controlling the coupling strength and phase between individual lattice sites. Utilizing two lattice sites couplings, we generated a compact localized state associated with the flat band, which remained localized throughout the entire time evolution. We successfully realized the continuous shift of flat bands by adjusting the corresponding nearest neighbor hopping strength, enabling us to observe the complete localization process. This opens avenues for further exploration of more complex properties within flat-band systems, including investigating the robustness of flat-band localized states in disordered flat-band systems and exploring many-body localization in interacting flat-band systems.展开更多
Quantum technology establishes a foundation for secure communication via quantum key distribution (QKD). In the last two decades, the rapid development of QKD makes a global quantum communication network feasible. I...Quantum technology establishes a foundation for secure communication via quantum key distribution (QKD). In the last two decades, the rapid development of QKD makes a global quantum communication network feasible. In order to construct this network, it is economical to consider small-sized and low-cost QKD payloads, which can be assembled on satellites with different sizes, such as space stations. Here we report an experimental demonstration of space-to-ground QKD using a small-sized payload, from Tiangong-2 space lab to Nanshan ground station. The 57.9-kg payload integrates a tracking system, a QKD transmitter along with modules for synchronization, and a laser communication transmitter. In the space lab, a 50MHz vacuum+weak decoy-state optical source is sent through a reflective telescope with an aperture of 200mm. On the ground station, a telescope with an aperture of 1200mm collects the signal photons. A stable and high-transmittance communication channel is set up with a high-precision bidirectional tracking system, a polarization compensation module, and a synchronization system. When the quantum link is successfully established, we obtain a key rate over 100bps with a communication distance up to 719km. Together with our recent development of QKD in daylight, the present demonstration paves the way towards a practical satellite-constellation-based global quantum secure network with small-sized QKD payloads.展开更多
We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures.At low temperature(0:06(1)T_F),the atom cloud undergoes an anis...We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures.At low temperature(0:06(1)T_F),the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms,which behaves like oscillation in the horizontal plane.By analyzing the expansion dynamics according to the superfluid hydrodynamic equation,the effective polytropic index y of Equation-of-State(EoS)of Fermionic superfluid is extracted.The y values show a non-monotonic behavior over the BEC-BCS crossover,and have a good agreement with the theoretical results in the unitarity and BEC side.The normalized quasi-frequencies of the oscillatory expansion are measured,which drop significantly from the BEC side to the BCS side and reach a minimum value of 1.73 around 1/k_Fa=-0:25.Our work improves the understanding of the dynamic properties of strongly interacting Fermi gas.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12074367)Anhui Initiative in Quantum Information Technologies,the National Key Research and Development Program of China (Grant No.2020YFA0309804)+3 种基金Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB35020200)Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302002)New Cornerstone Science Foundation。
文摘We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple twoand four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on the diamond model, precisely controlling the coupling strength and phase between individual lattice sites. Utilizing two lattice sites couplings, we generated a compact localized state associated with the flat band, which remained localized throughout the entire time evolution. We successfully realized the continuous shift of flat bands by adjusting the corresponding nearest neighbor hopping strength, enabling us to observe the complete localization process. This opens avenues for further exploration of more complex properties within flat-band systems, including investigating the robustness of flat-band localized states in disordered flat-band systems and exploring many-body localization in interacting flat-band systems.
基金Supported by China Manned Space Program,Technology and Engineering Center for Space Utilization Chinese Academy of Sciences,Chinese Academy of Sciencesthe National Natural Science Foundation of China
文摘Quantum technology establishes a foundation for secure communication via quantum key distribution (QKD). In the last two decades, the rapid development of QKD makes a global quantum communication network feasible. In order to construct this network, it is economical to consider small-sized and low-cost QKD payloads, which can be assembled on satellites with different sizes, such as space stations. Here we report an experimental demonstration of space-to-ground QKD using a small-sized payload, from Tiangong-2 space lab to Nanshan ground station. The 57.9-kg payload integrates a tracking system, a QKD transmitter along with modules for synchronization, and a laser communication transmitter. In the space lab, a 50MHz vacuum+weak decoy-state optical source is sent through a reflective telescope with an aperture of 200mm. On the ground station, a telescope with an aperture of 1200mm collects the signal photons. A stable and high-transmittance communication channel is set up with a high-precision bidirectional tracking system, a polarization compensation module, and a synchronization system. When the quantum link is successfully established, we obtain a key rate over 100bps with a communication distance up to 719km. Together with our recent development of QKD in daylight, the present demonstration paves the way towards a practical satellite-constellation-based global quantum secure network with small-sized QKD payloads.
基金supported by the National Natural Science Foundation of China (11874340)the National Key R&D Program of China (2018YFA0306501)+2 种基金the CASthe Anhui Initiative in Quantum Information Technologiesthe Fundamental Research Funds for the Central Universities (WK2340000081)
文摘We study the expansion behaviors of a Fermionic superfluid in a cigar-shaped optical dipole trap for the whole BEC-BCS crossover and various temperatures.At low temperature(0:06(1)T_F),the atom cloud undergoes an anisotropic hydrodynamic expansion over 30 ms,which behaves like oscillation in the horizontal plane.By analyzing the expansion dynamics according to the superfluid hydrodynamic equation,the effective polytropic index y of Equation-of-State(EoS)of Fermionic superfluid is extracted.The y values show a non-monotonic behavior over the BEC-BCS crossover,and have a good agreement with the theoretical results in the unitarity and BEC side.The normalized quasi-frequencies of the oscillatory expansion are measured,which drop significantly from the BEC side to the BCS side and reach a minimum value of 1.73 around 1/k_Fa=-0:25.Our work improves the understanding of the dynamic properties of strongly interacting Fermi gas.