With the help of a modified mapping method, we obtain two kinds of variable separation solutions with two arbitrary functions for the (24-1)-dimensional dispersive long wave equation. When selecting appropriate mult...With the help of a modified mapping method, we obtain two kinds of variable separation solutions with two arbitrary functions for the (24-1)-dimensional dispersive long wave equation. When selecting appropriate multi-valued functions in the variable separation solution, we investigate the interactions among special multi-dromions, dromion-like multi-peakons, and dromion-like multi-semifoldons, which all demonstrate non-completely elastic properties.展开更多
With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions ...With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.展开更多
We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical ...We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.展开更多
A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting ...A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting appropriate functions,we discuss the completely elastic head-on collision between two dromion-lattices,non-completely elastic "chase and collision" between two multi-dromion-pairs and completely non-elastic interaction phenomenon between anti-dromion and dromion-pair.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers,China (Grant No. 2009RC01)+1 种基金the Undergraduate Innovative Base of Zhejiang A & F University,Chinathe Zhejiang Province Undergraduate Scientific and Technological Innovation Project,China (Grant No. 2012R412018)
文摘With the help of a modified mapping method, we obtain two kinds of variable separation solutions with two arbitrary functions for the (24-1)-dimensional dispersive long wave equation. When selecting appropriate multi-valued functions in the variable separation solution, we investigate the interactions among special multi-dromions, dromion-like multi-peakons, and dromion-like multi-semifoldons, which all demonstrate non-completely elastic properties.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Undergraduate Scientific and Technological Innovation Project of Zhejiang Province of China (Grant No. 2012R412018)the Undergraduate Innovative Base Program of Zhejiang A & F University
文摘With the help of a modified mapping method and a new mapping method, we re-study the (3+1)-dimensional Burgers equation, and derive two families of variable separation solutions. By selecting appropriate functions in the variable separation solution, we discuss the interaction behaviors among taper-like, plateau-type rings, and rectangle-type embed-solitons in the periodic wave background. All the interaction behaviors are completely elastic, and no phase shift appears after interaction.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11005092)the Program for Innovative Research Team of Young Teachers of Zhejiang Agricultural and Forestry University, China (Grant No. 2009RC01)
文摘We reduce the variable-coefficient higher-order nonlinear Schrodinger equation (VCHNLSE) into the constantcoefficient (CC) one. Based on the reduction transformation and solutions of CCHNLSE, we obtain analytical soliton solutions embedded in the continuous wave background for the VCHNLSE. Then the excitation in advancement and sustainment of soliton arrays, and postponed disappearance and sustainment of the bright soliton embedded in the background are discussed in an exponential system.
基金Supported by the National Natural Science Foundation of China under Grant No. 11005092the Program for Innovative Research Team of Young Teachers under Grant No. 2009RC01Undergraduate Innovative Base of Zhejiang Agriculture and Forestry University,the Zhejiang Province Undergraduate Scientific and Technological Innovation Project under Grant No. 2012R412018
文摘A modified mapping method is used to obtain variable separation solution with two arbitrary functions of the(2+1)-dimensional Broer-Kaup-Kupershmidt equation.Based on the variable separation solution and by selecting appropriate functions,we discuss the completely elastic head-on collision between two dromion-lattices,non-completely elastic "chase and collision" between two multi-dromion-pairs and completely non-elastic interaction phenomenon between anti-dromion and dromion-pair.