随着大规模新能源接入电网,新型电力系统“低惯量、弱支撑”特征凸显,电网频率调节资源日益稀缺,系统频率稳定问题愈发严峻。先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具有容量大、寿命长等优...随着大规模新能源接入电网,新型电力系统“低惯量、弱支撑”特征凸显,电网频率调节资源日益稀缺,系统频率稳定问题愈发严峻。先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具有容量大、寿命长等优势而受到广泛关注,但由于其储能和释能过程涉及气-热动态耦合过程,调频特性较为复杂,调频潜力还有待挖掘。因此,首先建立AA-CAES系统全工况动态仿真模型,进而基于期望频率动态曲线设计AA-CAES系统调频传递函数,优化目标传递函数关键参数,实现AA-CAES最小动态功率补偿下满足系统频率调节需求。最后通过仿真实验,验证了所提控制策略可优化AA-CAES调频容量的同时减小系统的稳态频率偏差与频率超调量,显著改善频率响应特性,为建设电网友好型AA-CAES电站提供技术支撑。展开更多
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力...先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。展开更多
文摘随着大规模新能源接入电网,新型电力系统“低惯量、弱支撑”特征凸显,电网频率调节资源日益稀缺,系统频率稳定问题愈发严峻。先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)具有容量大、寿命长等优势而受到广泛关注,但由于其储能和释能过程涉及气-热动态耦合过程,调频特性较为复杂,调频潜力还有待挖掘。因此,首先建立AA-CAES系统全工况动态仿真模型,进而基于期望频率动态曲线设计AA-CAES系统调频传递函数,优化目标传递函数关键参数,实现AA-CAES最小动态功率补偿下满足系统频率调节需求。最后通过仿真实验,验证了所提控制策略可优化AA-CAES调频容量的同时减小系统的稳态频率偏差与频率超调量,显著改善频率响应特性,为建设电网友好型AA-CAES电站提供技术支撑。
文摘先进绝热压缩空气储能(advanced adiabatic compressed air energy storage system,AA-CAES)仿真建模及分析是其工程实践的基础。然而,目前模型一般基于理想工况建立,分析结果与实际工况相偏差较大,无法指导工程应用。为此,在传统热力学模型基础上,考虑了空气流动阻力损失和能量转换设备损耗等因素,建立了面向工程应用的AA-CAES模型并以200MW盐穴AA-CAES系统为例进行了分析。同时,对系统效率分析方法进行改进并对其进行了先进㶲分析。结果表明,空气管道㶲损失占总㶲损失比例接近7%,能量转换设备损耗导致电-电效率比轴功效率低5%,二者对系统性能影响较大,在进行工程设计时不可以忽略。系统各部件可避免㶲损失占比均较大,表明系统具有较大的性能提升潜力。各部件㶲损失为其内部㶲损失,与其他部件是否工作在最佳状态关系不大。