Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at...Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.展开更多
文摘Kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson cv. Bruno) was used toinvestigate the effects of acetylsalicylic acid (ASA, 1.0 mmol/L, pH 3.5) and ethylene (100 mL/L) treat-ments on changes at endogenous salicylic acid (SA) levels and other senescence-related factors duringfruit ripening and softening at 20 ℃. The level of endogenous SA in ripening fruits declined and a closerelationship was observed between the change at endogenous SA level and the rate of fruit ripening andsoftening. ASA treatment elevated SA level in the fruit, slowed down the increases in lipoxygenase (LOX)and allene oxide synthase (AOS) activities, decreased the O22-. production in the preclimacteric phase andthe early phase of ethylene climacteric rise, maintained the stability of cell membrane, inhibited ethylenebiosynthesis, postponed the onset of the ethylene climacteric, and delayed the process of fruit ripeningand softening. On the contrary, application of ethylene to ripening kiwifruit resulted at a lower SA level, anaccelerated increases in the activities of LOX and AOS and the rate of O22-. production, an elevated relativeelectric conductivity and an advanced onset of ethylene climacteric, and a quicker fruit ripening andsoftening. It is suggested that the effects of ASA on ripening kiwifruit can be attributed to its ability toscavenge O22-. and/or to maintain stability of cell membrane.