为提高电信网设备应对异常信令访问的检测能力,需对64K信令进行分析并处理。为了提高解析效率并满足近年来相关产品对自主可控越来越高的要求,设计了一种基于国产现场可编程门阵列(Field Programmable Gate Array, FPGA)的信令解析方案...为提高电信网设备应对异常信令访问的检测能力,需对64K信令进行分析并处理。为了提高解析效率并满足近年来相关产品对自主可控越来越高的要求,设计了一种基于国产现场可编程门阵列(Field Programmable Gate Array, FPGA)的信令解析方案,给出了方案的总体设计思路,并对FPGA实现的功能模块进行详细说明。对系统进行设计时,采用模块化参数化方法以及在关键环节添加状态参数,提高了可扩展性并可以对模块内部运行状态进行监控,最终实现了对信令高效且灵活的解析,主要器件等均为国产。经过测试,可以实现STM-1(STM-Synchronous Transfer Module-1)数据的接入、串并转换、HDLC(High-level Data Link Control)解帧等功能,完成32路64K信令的并发处理,模块运行状态可查可看,达到了预期的效果。以STM-1为例,基于现有功能的模块化设计,可以平滑地扩展到STM-4、STM-16的应用。展开更多
针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组...针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组的超节点合并,直到达到指定次数或指定节点数;再次,在超节点之间添加超边和校正边以恢复原始图;最后,对于图压缩部分,判断对每个超节点的邻接边压缩和摘要的代价,并选择二者中代价较小的执行。在Web-NotreDame、Web-Google和Web-Berkstan等6个数据集上进行了图压缩率和图查询实验。实验结果表明,在6个数据集上,与SLUGGER(Scalable Lossless sUmmarization of Graphs with HiERarchy)算法相比,所提算法的压缩率至少降低了23个百分点;与SWeG(Summarization of Web-scale Graphs)算法相比,所提算法的压缩率至少降低了13个百分点;在Web-NotreDame数据集上,所提算法的度误差比SWeG降低了41.6%。以上验证了所提算法具有更好的图压缩率和图查询准确度。展开更多
文摘为提高电信网设备应对异常信令访问的检测能力,需对64K信令进行分析并处理。为了提高解析效率并满足近年来相关产品对自主可控越来越高的要求,设计了一种基于国产现场可编程门阵列(Field Programmable Gate Array, FPGA)的信令解析方案,给出了方案的总体设计思路,并对FPGA实现的功能模块进行详细说明。对系统进行设计时,采用模块化参数化方法以及在关键环节添加状态参数,提高了可扩展性并可以对模块内部运行状态进行监控,最终实现了对信令高效且灵活的解析,主要器件等均为国产。经过测试,可以实现STM-1(STM-Synchronous Transfer Module-1)数据的接入、串并转换、HDLC(High-level Data Link Control)解帧等功能,完成32路64K信令的并发处理,模块运行状态可查可看,达到了预期的效果。以STM-1为例,基于现有功能的模块化设计,可以平滑地扩展到STM-4、STM-16的应用。
文摘针对当前图摘要方法压缩率较高,图压缩算法无法直接被用于下游任务分析的问题,提出一种图摘要与图压缩的融合算法,即基于节点相似性分组与图压缩的图摘要算法(GSNSC)。首先,初始化节点为超节点,并根据相似度对超节点分组;其次,将每个组的超节点合并,直到达到指定次数或指定节点数;再次,在超节点之间添加超边和校正边以恢复原始图;最后,对于图压缩部分,判断对每个超节点的邻接边压缩和摘要的代价,并选择二者中代价较小的执行。在Web-NotreDame、Web-Google和Web-Berkstan等6个数据集上进行了图压缩率和图查询实验。实验结果表明,在6个数据集上,与SLUGGER(Scalable Lossless sUmmarization of Graphs with HiERarchy)算法相比,所提算法的压缩率至少降低了23个百分点;与SWeG(Summarization of Web-scale Graphs)算法相比,所提算法的压缩率至少降低了13个百分点;在Web-NotreDame数据集上,所提算法的度误差比SWeG降低了41.6%。以上验证了所提算法具有更好的图压缩率和图查询准确度。