A two-dimensional (2D) multi-channel silicon-based microelectrode array is developed for recording neural signals. Three photolithographic masks are utilized in the fabrication process. SEM images show that the micr...A two-dimensional (2D) multi-channel silicon-based microelectrode array is developed for recording neural signals. Three photolithographic masks are utilized in the fabrication process. SEM images show that the microprobe is 1.2mm long, 100μm wide,and 30μm thick,with recording sites spaced 200μm apart for good signal isolation. For the individual recording sites, the characteristics of impedance versus frequency are shown by in vitro testing. The impedance declines from 14MΩ to 1.9kΩ as the frequency changes from 0 to 10MHz. A compatible PCB (print circuit board) aids in the less troublesome implantation and stabilization of the microprobe.展开更多
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface...A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.展开更多
文摘A two-dimensional (2D) multi-channel silicon-based microelectrode array is developed for recording neural signals. Three photolithographic masks are utilized in the fabrication process. SEM images show that the microprobe is 1.2mm long, 100μm wide,and 30μm thick,with recording sites spaced 200μm apart for good signal isolation. For the individual recording sites, the characteristics of impedance versus frequency are shown by in vitro testing. The impedance declines from 14MΩ to 1.9kΩ as the frequency changes from 0 to 10MHz. A compatible PCB (print circuit board) aids in the less troublesome implantation and stabilization of the microprobe.
文摘A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.