针对弱光线环境下道路交通标志检测精度不高、漏检、错检等情况,提出了一种改进YOLOX的融合检测算法。该算法引入轻量级Mobile Vi T Block模块,将CNN和Transformer结合,提高了网络对物体局部和全局特征的学习能力;通过添加自适应特征融...针对弱光线环境下道路交通标志检测精度不高、漏检、错检等情况,提出了一种改进YOLOX的融合检测算法。该算法引入轻量级Mobile Vi T Block模块,将CNN和Transformer结合,提高了网络对物体局部和全局特征的学习能力;通过添加自适应特征融合金字塔ASFF,对有效特征层进行加权融合,加快了网络训练收敛速度;并采用Focal Loss替换二元交叉熵损失函数,用以解决因样本少导致分类不准确的问题。实验结果表明,相较于YOLOX算法,改进YOLOX算法mAP值提升了2.89%,参数量减少了6.23 M,可视化实验进一步验证了所提算法可以提高检测精度,有效避免因弱光线导致的漏检、错检现象。展开更多
文摘针对弱光线环境下道路交通标志检测精度不高、漏检、错检等情况,提出了一种改进YOLOX的融合检测算法。该算法引入轻量级Mobile Vi T Block模块,将CNN和Transformer结合,提高了网络对物体局部和全局特征的学习能力;通过添加自适应特征融合金字塔ASFF,对有效特征层进行加权融合,加快了网络训练收敛速度;并采用Focal Loss替换二元交叉熵损失函数,用以解决因样本少导致分类不准确的问题。实验结果表明,相较于YOLOX算法,改进YOLOX算法mAP值提升了2.89%,参数量减少了6.23 M,可视化实验进一步验证了所提算法可以提高检测精度,有效避免因弱光线导致的漏检、错检现象。