针对常规预测方法难以准确预测负荷曲线产生的相应变化,本文建立了考虑需求响应的电力系统短期负荷预测模型。根据系统调度员(distribution system operators,DSOs)接收的需求响应信号,确定用户的实际需求响应,并以此作为建模的依据,构...针对常规预测方法难以准确预测负荷曲线产生的相应变化,本文建立了考虑需求响应的电力系统短期负荷预测模型。根据系统调度员(distribution system operators,DSOs)接收的需求响应信号,确定用户的实际需求响应,并以此作为建模的依据,构造出考虑需求响应的负荷时间序列,建立计及需求响应的径向基函数神经网络(radial basis function-neural networks,RBF-NN)预测模型,并通过实际负荷算例进行仿真分析。分析结果表明,若在RBF-NN预测模型中计及需求响应因素,平均绝对误差为4.439%;若不计及需求响应因素,平均绝对误差为12.784%;在预测模型中融入需求响应因素,可使平均绝对误差降低8.345%,预测准确度较高。因此,电力系统短期负荷预测模型中融入需求响应因素,能够达到更高的准确度。该研究具有较好的理论价值和实际应用价值。展开更多