VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方...VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方法应用于滚动轴承故障诊断。首先采用ITD(Intrinsic Time-scale Decomposition,简称ITD)对滚动轴承振动信号进行分解,得到若干个固有旋转(Proper Rotation)分量,并对包含主要故障信息的PR分量提取排列熵作为故障特征值;然后,对VPMCD分类器进行训练;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明该方法能够有效地应用于滚动轴承故障诊断。展开更多
将基于变量预测模型的模式识别(variable predictive model based class discriminate,简称VPMCD)、独立分量分析(independent component analysis,简称ICA)和相关系数分析方法相结合,提出了基于ICA相关系数和VPMCD的滚动轴承故障诊断...将基于变量预测模型的模式识别(variable predictive model based class discriminate,简称VPMCD)、独立分量分析(independent component analysis,简称ICA)和相关系数分析方法相结合,提出了基于ICA相关系数和VPMCD的滚动轴承故障诊断方法。首先,对不同工况下的滚动轴承振动信号分别进行独立分量分析,获得各工况信号的独立分量;然后,提取样本与不同工况信号独立分量之间的相关系数,并以相关系数绝对值的和作为该样本的特征值;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明,该方法能够有效应用于滚动轴承故障诊断。展开更多
提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非...提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非线性分类问题,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。在基于VPMCD和EMD的齿轮故障诊断方法中,首先采用EMD方法将齿轮振动信号自适应地分解为若干个单分量信号,然后提取各个分量的样本熵并将其作为特征值,最后采用VPMCD分类器进行故障识别和分类。结果表明该方法能够有效地突出齿轮故障振动信号的故障特征,提高了齿轮故障诊断的准确性。展开更多
FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property...FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...展开更多
文摘VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方法应用于滚动轴承故障诊断。首先采用ITD(Intrinsic Time-scale Decomposition,简称ITD)对滚动轴承振动信号进行分解,得到若干个固有旋转(Proper Rotation)分量,并对包含主要故障信息的PR分量提取排列熵作为故障特征值;然后,对VPMCD分类器进行训练;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明该方法能够有效地应用于滚动轴承故障诊断。
文摘将基于变量预测模型的模式识别(variable predictive model based class discriminate,简称VPMCD)、独立分量分析(independent component analysis,简称ICA)和相关系数分析方法相结合,提出了基于ICA相关系数和VPMCD的滚动轴承故障诊断方法。首先,对不同工况下的滚动轴承振动信号分别进行独立分量分析,获得各工况信号的独立分量;然后,提取样本与不同工况信号独立分量之间的相关系数,并以相关系数绝对值的和作为该样本的特征值;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明,该方法能够有效应用于滚动轴承故障诊断。
文摘提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非线性分类问题,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。在基于VPMCD和EMD的齿轮故障诊断方法中,首先采用EMD方法将齿轮振动信号自适应地分解为若干个单分量信号,然后提取各个分量的样本熵并将其作为特征值,最后采用VPMCD分类器进行故障识别和分类。结果表明该方法能够有效地突出齿轮故障振动信号的故障特征,提高了齿轮故障诊断的准确性。
基金supported by the National Natural Science Foundation of China (50575034)
文摘FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...