文章通过分析国内外产学研用协同创新人才培养模式的研究现状,指出当前机械制造专业群人才培养模式中存在的教学内容与市场需求脱节、实践教学体系不完善、创新创业师资队伍匮乏等问题,提出该创新模式构建可基于市场导向、校企合作、资...文章通过分析国内外产学研用协同创新人才培养模式的研究现状,指出当前机械制造专业群人才培养模式中存在的教学内容与市场需求脱节、实践教学体系不完善、创新创业师资队伍匮乏等问题,提出该创新模式构建可基于市场导向、校企合作、资源共享、创新驱动以及可持续发展等原则,利用优化专业群布局、改革课程体系、构建实践教学体系、创新校企合作机制等策略,并明确了具体的实施路径,从而有助于实现教育与产业的深度融合,提升人才培养质量和国际竞争力,为我国制造业的转型升级提供技术技能型双创人才支撑。By analyzing the research status of talent training mode of production-learning-research-application collaborative innovation at home and abroad, this paper points out the problems existing in the current talent training mode of mechanical manufacturing specialty group, such as the disconnection between teaching content and market demand, the imperfect practical teaching system, and the lack of innovative and entrepreneurial teachers. It proposes that the construction of this innovative mode can be based on the principles of market orientation, school-enterprise cooperation, resource sharing, innovation driven, and sustainable development. By utilizing strategies such as optimizing the layout of professional groups, reforming the curriculum system, constructing the practical teaching system, and innovating school-enterprise cooperation mechanisms, and clarifying specific implementation paths, it helps to realize the deep integration between education and industry, improve the quality of talent cultivation and international competitiveness, and provide technical and skilled talents for the transformation and upgrading of China’s manufacturing industry.展开更多
高熵合金突破传统合金设计思想,依靠近等摩尔比、不低于5种组元混合形成具有远低于平衡相所预测的相数和简单的固溶体结构,从而有可能冲破传统金属材料的性能极限。为了研究多主元合金元素的物相形成机理与显微组织结构对宏观摩擦磨损...高熵合金突破传统合金设计思想,依靠近等摩尔比、不低于5种组元混合形成具有远低于平衡相所预测的相数和简单的固溶体结构,从而有可能冲破传统金属材料的性能极限。为了研究多主元合金元素的物相形成机理与显微组织结构对宏观摩擦磨损性能的影响,采用非自耗电弧熔炼技术制备了等摩尔比的Al Co Cr Cu Fe多主元高熵合金。用X射线衍射仪、扫描电子显微镜、能谱分析仪、显微硬度计和摩擦磨损试验机测试了Al Co Cr Cu Fe合金的物相结构、显微组织与摩擦磨损性能。研究发现:Al Co Cr Cu Fe高熵合金的显微组织为典型的树枝晶,由简单的BCC相和FCC相构成,且BCC相和FCC相的各衍射峰均普遍较宽。在干摩擦条件下,Al Co Cr Cu Fe/GCr15摩擦副的摩擦系数随摩擦时间增大呈先升高后降低再稳定的过程,其磨损机制由剥层磨损向氧化磨损转变,其平均摩擦系数为0.55,质量损失率为1.44%。结果表明:晶间为Cu元素富集区域;枝晶区域为调幅分解的网格层状结构;枝晶边界附近有纳米颗粒析出。Cu元素晶间富集主要是由于Cu与其他元素的混合焓、结合能力、互溶性、熔点等差异较大引起的;枝晶区域的调幅分解层状结构则主要是因为原子尺寸因素产生的共格应力与弹性交互作用抑制了组织长大;枝晶边界附近的纳米颗粒析出则由迟滞扩散效应、金属遗传性与工艺过程所决定。BCC相和FCC相衍射峰变宽是由于各组元原子半径差较大、各元素等摩尔比存在且混合焓不同、合金内部有较大残余应力以及晶粒尺寸小范围广所致。展开更多
文摘文章通过分析国内外产学研用协同创新人才培养模式的研究现状,指出当前机械制造专业群人才培养模式中存在的教学内容与市场需求脱节、实践教学体系不完善、创新创业师资队伍匮乏等问题,提出该创新模式构建可基于市场导向、校企合作、资源共享、创新驱动以及可持续发展等原则,利用优化专业群布局、改革课程体系、构建实践教学体系、创新校企合作机制等策略,并明确了具体的实施路径,从而有助于实现教育与产业的深度融合,提升人才培养质量和国际竞争力,为我国制造业的转型升级提供技术技能型双创人才支撑。By analyzing the research status of talent training mode of production-learning-research-application collaborative innovation at home and abroad, this paper points out the problems existing in the current talent training mode of mechanical manufacturing specialty group, such as the disconnection between teaching content and market demand, the imperfect practical teaching system, and the lack of innovative and entrepreneurial teachers. It proposes that the construction of this innovative mode can be based on the principles of market orientation, school-enterprise cooperation, resource sharing, innovation driven, and sustainable development. By utilizing strategies such as optimizing the layout of professional groups, reforming the curriculum system, constructing the practical teaching system, and innovating school-enterprise cooperation mechanisms, and clarifying specific implementation paths, it helps to realize the deep integration between education and industry, improve the quality of talent cultivation and international competitiveness, and provide technical and skilled talents for the transformation and upgrading of China’s manufacturing industry.
文摘高熵合金突破传统合金设计思想,依靠近等摩尔比、不低于5种组元混合形成具有远低于平衡相所预测的相数和简单的固溶体结构,从而有可能冲破传统金属材料的性能极限。为了研究多主元合金元素的物相形成机理与显微组织结构对宏观摩擦磨损性能的影响,采用非自耗电弧熔炼技术制备了等摩尔比的Al Co Cr Cu Fe多主元高熵合金。用X射线衍射仪、扫描电子显微镜、能谱分析仪、显微硬度计和摩擦磨损试验机测试了Al Co Cr Cu Fe合金的物相结构、显微组织与摩擦磨损性能。研究发现:Al Co Cr Cu Fe高熵合金的显微组织为典型的树枝晶,由简单的BCC相和FCC相构成,且BCC相和FCC相的各衍射峰均普遍较宽。在干摩擦条件下,Al Co Cr Cu Fe/GCr15摩擦副的摩擦系数随摩擦时间增大呈先升高后降低再稳定的过程,其磨损机制由剥层磨损向氧化磨损转变,其平均摩擦系数为0.55,质量损失率为1.44%。结果表明:晶间为Cu元素富集区域;枝晶区域为调幅分解的网格层状结构;枝晶边界附近有纳米颗粒析出。Cu元素晶间富集主要是由于Cu与其他元素的混合焓、结合能力、互溶性、熔点等差异较大引起的;枝晶区域的调幅分解层状结构则主要是因为原子尺寸因素产生的共格应力与弹性交互作用抑制了组织长大;枝晶边界附近的纳米颗粒析出则由迟滞扩散效应、金属遗传性与工艺过程所决定。BCC相和FCC相衍射峰变宽是由于各组元原子半径差较大、各元素等摩尔比存在且混合焓不同、合金内部有较大残余应力以及晶粒尺寸小范围广所致。