N-polar GaN film was obtained by using a high-temperature AlN buffer layer.It was found that the polarity could be inverted by a thin low-temperature AlN interlayer with the same V/III ratio as that of the high-temper...N-polar GaN film was obtained by using a high-temperature AlN buffer layer.It was found that the polarity could be inverted by a thin low-temperature AlN interlayer with the same V/III ratio as that of the high-temperature AlN layer.Continuing to increase the V/III ratio of the low-temperature AlN interlayer,the Ga-polarity of GaN film was inverted to N-polarity again but the crystal quality and surface roughness of GaN film greatly deteriorated.Finally,we analyzed the chemical environment of the AlN layer by x-ray photoelectron spectroscopy(XPS),which provides a new direction for the control of GaN polarity.展开更多
The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and witho...The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.展开更多
Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in ...Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in the InGaN/GaN multiquantum wells embedded in a p-n junction. Under non-resonant absorption conditions, a photocurrent was generated and the photoluminescence intensity decayed by more than 70% when the p-n junction out-circuit was switched from open to short. However, when the excitation photon energy decreased to the resonant absorption edge, the photocurrent dropped drastically and the photoluminescence under open and short circuit conditions showed similar intensity. These results indicate that the escaping of the photo-generated carriers from the quantum wells is closely related to the excitation photon energy.展开更多
Absorption coefficient is a physical parameter to describe electromagnetic energy absorption of materials, which is closely related to solar cells and photodetectors. We grow a series of positive-intrinsic-negative(PI...Absorption coefficient is a physical parameter to describe electromagnetic energy absorption of materials, which is closely related to solar cells and photodetectors. We grow a series of positive-intrinsic-negative(PIN) structures on silicon wafer by a gas source molecule beam epitaxy system and the investigate the absorption coefficient through the photovoltaic processes in detail. It is found that the absorption coefficient is enhanced by one order and can be tuned greatly through the thickness of the intrinsic layer in the PIN structure, which is also demonstrated by the 730-nm-wavelength laser irradiation. These results cannot be explained by the traditional absorption theory.We speculate that there could be some uncovered mechanism in this system, which will inspire us to understand the absorption process further.展开更多
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used i...A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.展开更多
According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which...According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which have been observed in quantum dots without a p–n junction at an external bias.Here,we experimentally observed more than 88% of the resonantly excited photo carriers escaping from In As quantum dots embedded in a short-circuited p–n junction to form photocurrent.The phenomenon cannot be explained by thermionic emission,tunneling process,and intermediate-band theories.A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p–n junction.The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.展开更多
The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the el...The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the electroluminescence (EL) of green InGaN-based LEDs. Compared with the conventional quantum well structure, the novel structure LED gained 2.14 times light out power (LOP) at 20-mA current injection, narrower FWHM and lower blue-shift at different current injection conditions.展开更多
We report a type of thin film Al Ga In P red light emitting diode(RLED) on a metallic substrate by electroplating copper(Cu) to eliminate the absorption of Ga As grown substrate.The fabrication of the thin film RL...We report a type of thin film Al Ga In P red light emitting diode(RLED) on a metallic substrate by electroplating copper(Cu) to eliminate the absorption of Ga As grown substrate.The fabrication of the thin film RLED is presented in detail.Almost no degradations of epilayers properties are observed after this substrate transferred process.Photoluminescence and electroluminescence are measured to investigate the luminous characteristics.The thin film RLED shows a significant enhancement of light output power(LOP) by improving the injection efficiency and light extraction efficiency compared with the reference RLED on the Ga As parent substrate.The LOPs are specifically enhanced by 73.5% and 142% at typical injections of 2 A/cm^2 and 35 A/cm^2 respectively from electroluminescence.Moreover,reduced forward voltages,stable peak wavelengths and full widths at half maximum are obtained with the injected current increasing.These characteristic improvements are due to the Cu substrate with great current spreading and the back reflection by bottom electrodes.The substrate transferred technology based on electroplating provides an optional way to prepare high-performance optoelectronic devices,especially for thin film types.展开更多
In this paper we report on the effect of an lnxGal xN continuously graded buffer layer on an InGaN epilayer grown on a GaN template. In our experiment, three types of buffer layers including constant composition, cont...In this paper we report on the effect of an lnxGal xN continuously graded buffer layer on an InGaN epilayer grown on a GaN template. In our experiment, three types of buffer layers including constant composition, continuously graded composition, and the combination of constant and continuously graded composition are used. Surface morphologies, crystalline quality, indium incorporations, and relaxation degrees of InGaN epilayers with different buffer layers are investigated. It is found that the InxGa1-xN continuously graded buffer layer is effective to improve the surface morphology, crystalline quality, and the indium incorporation of the InGaN epilayer. These superior characteristics of the continuously graded buffer layer can be attributed to the sufficient strain release and the reduction of dislocations.展开更多
In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LE...In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.展开更多
Influences of the Si doping on the structural and optical properties of the InGaN epilayers are investigated in detail by means of high-resolution X-ray diffraction (HRXRD), photolumimescence (PL), scanning electr...Influences of the Si doping on the structural and optical properties of the InGaN epilayers are investigated in detail by means of high-resolution X-ray diffraction (HRXRD), photolumimescence (PL), scanning electron microscope (SEM), and atomic force microscopy (AFM). It is found that the Si doping may improve the surface morphology and crystal quality of the InGaN film and meanwhile it can also enhance the emission efficiency by increasing the electron concentration in the InGaN and suppressing tile formation of V-defects, which act as nonradiative recombination centers in the InGaN, and it is proposed that the former plays a more important role in enhancing the emission efficiency in the InGaN.展开更多
SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the ...SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density.In addition,the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined,nearly spherical outline.As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size,this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.展开更多
The contact characteristic between p-InP and metal plays an important role in InP-related optoelectronic and microelectronic device applications.We investigate the low-resistance Au/Pt/Ni and Au/Ni ohmic contacts to p...The contact characteristic between p-InP and metal plays an important role in InP-related optoelectronic and microelectronic device applications.We investigate the low-resistance Au/Pt/Ni and Au/Ni ohmic contacts to p-InP based on the solid phase regrowth principle.The lowest specific contact resistivity of Au(100 nm)/Pt(115 nm)/Ni(50 nm)can reach 2.64×10^(-6)Ω·cm^(2) after annealing at 380℃ for 1 min,while the contact characteristics of Au/Ni deteriorated after annealing from 340℃ to 480℃ for 1 min.The results of scanning electron microscopy,atomic force microscopy and x-ray photoelectron spectroscopy show that the Pt layer is an important factor in improving the contact characteristics.The Pt layer prevents the diffusion of In and Au,inhibits the formation of Au3In metal compounds,and prevents the deterioration of the ohmic contact.The metal structures and optimized annealing process is expected to be helpful for obtaining high-performance InP-related devices.展开更多
基金Supported by the National Natural Science Foundation of China(11574362,61210014,11374340,and 11474205)Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission(Z151100003515001)
基金Project supported by the National Natural Science Foundation of China(Grant No.62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000).
文摘N-polar GaN film was obtained by using a high-temperature AlN buffer layer.It was found that the polarity could be inverted by a thin low-temperature AlN interlayer with the same V/III ratio as that of the high-temperature AlN layer.Continuing to increase the V/III ratio of the low-temperature AlN interlayer,the Ga-polarity of GaN film was inverted to N-polarity again but the crystal quality and surface roughness of GaN film greatly deteriorated.Finally,we analyzed the chemical environment of the AlN layer by x-ray photoelectron spectroscopy(XPS),which provides a new direction for the control of GaN polarity.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11574362,61210014,and 11374340the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission under Grant No Z151100003515001
文摘The resonant excitation is used to generate photo-excited carriers in quantum wells to observe the process of the carriers transportation by comparing the photoluminescence results between quantum wells with and without a p-n junction. It is observed directly in experiment that most of the photo-excited carriers in quantum wells with a p-n junction escape from quantum wells and form photoeurrent rather than relax to the ground state of the quantum wells. The photo absorption coei^cient of multiple quantum wells is also enhanced by a p-n junction. The results pave a novel way for solar cells and photodetectors making use of low-dimensional structure.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400302 and 2016YFB0400603)the National Natural Science Foundation of China(Grant Nos.11574362,61210014,and 11374340)the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission,China(Grant No.Z151100003515001)
文摘Absorption and carrier transport behavior plays an important role in the light-to-electricity conversion process, which is difficult to characterize. Here we develop a method to visualize such a conversion process in the InGaN/GaN multiquantum wells embedded in a p-n junction. Under non-resonant absorption conditions, a photocurrent was generated and the photoluminescence intensity decayed by more than 70% when the p-n junction out-circuit was switched from open to short. However, when the excitation photon energy decreased to the resonant absorption edge, the photocurrent dropped drastically and the photoluminescence under open and short circuit conditions showed similar intensity. These results indicate that the escaping of the photo-generated carriers from the quantum wells is closely related to the excitation photon energy.
基金Supported by the National Natural Science Foundation of China under Grant No 11574362
文摘Absorption coefficient is a physical parameter to describe electromagnetic energy absorption of materials, which is closely related to solar cells and photodetectors. We grow a series of positive-intrinsic-negative(PIN) structures on silicon wafer by a gas source molecule beam epitaxy system and the investigate the absorption coefficient through the photovoltaic processes in detail. It is found that the absorption coefficient is enhanced by one order and can be tuned greatly through the thickness of the intrinsic layer in the PIN structure, which is also demonstrated by the 730-nm-wavelength laser irradiation. These results cannot be explained by the traditional absorption theory.We speculate that there could be some uncovered mechanism in this system, which will inspire us to understand the absorption process further.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574362,61210014,and 11374340)the Innovative Clean-energy Research and Application Program of Beijing Municipal Science and Technology Commission,China(Grant No.Z151100003515001)
文摘A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574362,61210014,11374340,and 11474205)the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission,China(Grant No.Z151100003515001)
文摘According to the well-established light-to-electricity conversion theory,resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent,which have been observed in quantum dots without a p–n junction at an external bias.Here,we experimentally observed more than 88% of the resonantly excited photo carriers escaping from In As quantum dots embedded in a short-circuited p–n junction to form photocurrent.The phenomenon cannot be explained by thermionic emission,tunneling process,and intermediate-band theories.A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p–n junction.The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400300 and 2016YFB0400600)the National Natural Science Foundation of China(Grant Nos.11574362,61210014,and 11374340)the Innovative Clean-Energy Research and Application Program of Beijing Municipal Science and Technology Commission(Grant No.Z151100003515001)
文摘The green light emitting diodes (LEDs) have lower quantum efficiency than LEDs with other emission wavelengths in the visible spectrum. In this research, a novel quantum well structure was designed to improve the electroluminescence (EL) of green InGaN-based LEDs. Compared with the conventional quantum well structure, the novel structure LED gained 2.14 times light out power (LOP) at 20-mA current injection, narrower FWHM and lower blue-shift at different current injection conditions.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0400600 and 2016YFB0400603)the National Natural Science Foundation of China(Grant Nos.11574362,61210014,and 11374340)
文摘We report a type of thin film Al Ga In P red light emitting diode(RLED) on a metallic substrate by electroplating copper(Cu) to eliminate the absorption of Ga As grown substrate.The fabrication of the thin film RLED is presented in detail.Almost no degradations of epilayers properties are observed after this substrate transferred process.Photoluminescence and electroluminescence are measured to investigate the luminous characteristics.The thin film RLED shows a significant enhancement of light output power(LOP) by improving the injection efficiency and light extraction efficiency compared with the reference RLED on the Ga As parent substrate.The LOPs are specifically enhanced by 73.5% and 142% at typical injections of 2 A/cm^2 and 35 A/cm^2 respectively from electroluminescence.Moreover,reduced forward voltages,stable peak wavelengths and full widths at half maximum are obtained with the injected current increasing.These characteristic improvements are due to the Cu substrate with great current spreading and the back reflection by bottom electrodes.The substrate transferred technology based on electroplating provides an optional way to prepare high-performance optoelectronic devices,especially for thin film types.
基金Project supported by the National High Technology Research and Development Program of China (Grant Nos.2011AA03A112,2011AA03A106,and 2013AA03A101)the National Natural Science Foundation of China (Grant Nos.11204360,61210014,and 61078046)+2 种基金the Science & Technology Innovation Program of the Department of Education of Guangdong Province,China (Grant No.2012CXZD0017)the Industry–Academia-Research Union Special Fund of Guangdong Province,China (Grant No.2012B091000169)the Science & Technology Innovation Platform of Industry–Academia-Research Union of Guangdong Province–Ministry Cooperation Special Fund,China (Grant No.2012B090600038)
文摘In this paper we report on the effect of an lnxGal xN continuously graded buffer layer on an InGaN epilayer grown on a GaN template. In our experiment, three types of buffer layers including constant composition, continuously graded composition, and the combination of constant and continuously graded composition are used. Surface morphologies, crystalline quality, indium incorporations, and relaxation degrees of InGaN epilayers with different buffer layers are investigated. It is found that the InxGa1-xN continuously graded buffer layer is effective to improve the surface morphology, crystalline quality, and the indium incorporation of the InGaN epilayer. These superior characteristics of the continuously graded buffer layer can be attributed to the sufficient strain release and the reduction of dislocations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11204360 and 61210014)the Science and Technology Planning Projects of Guangdong Province,China(Grant Nos.2014B050505020,2015B010114007,and 2014B090904045)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134407110008)the Guangzhou Municipal Science and Technology Project of Guangdong Province,China(Grant No.2016201604030027)the Zhongshan Science and Technology Project of Guangdong Province,China(Grant No.2013B3FC0003)
文摘In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.
基金Project supported by the National High Technology Research and Development Program of China (Grant Nos.2011AA03A112,2011AA03A106,and 2013AA03A101)the National Natural Science Foundation of China (Grant Nos.11204360,61210014,and 61078046)+2 种基金the Science & Technology Innovation Program of Department of Education of Guangdong Province,China (Grant No.2012CXZD0017)the Industry–Academia Research Union Special Fund of Guangdong Province,China (Grant No.2012B091000169)the Science & Technology Innovation Platform of Industry–Academia Research Union of Guangdong Province–Ministry Cooperation Special Fund,China (Grant No.2012B090600038)
文摘Influences of the Si doping on the structural and optical properties of the InGaN epilayers are investigated in detail by means of high-resolution X-ray diffraction (HRXRD), photolumimescence (PL), scanning electron microscope (SEM), and atomic force microscopy (AFM). It is found that the Si doping may improve the surface morphology and crystal quality of the InGaN film and meanwhile it can also enhance the emission efficiency by increasing the electron concentration in the InGaN and suppressing tile formation of V-defects, which act as nonradiative recombination centers in the InGaN, and it is proposed that the former plays a more important role in enhancing the emission efficiency in the InGaN.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62004218,61991441,and 61804176)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘SiGe spheres with different diameters are successfully fabricated on a virtual SiGe template using a laser irradiation method.The results from scanning electron microscopy and micro-Raman spectroscopy reveal that the diameter and Ge composition of the SiGe spheres can be well controlled by adjusting the laser energy density.In addition,the transmission electron microscopy results show that Ge composition inside the SiGe spheres is almost uniform in a well-defined,nearly spherical outline.As a convenient method to prepare sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size,this technique is expected to be useful for SiGe-based material growth and micro/optoelectronic device fabrication.
基金Supported by the National Natural Science Foundation of China(Grant Nos.62004218,61704008,61804176,and 61991441)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2021005)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)Jiangsu Science and Technology Plan(Grant No.BK20180255)supported by the Center for Clean Energy,Institute of Physics,Chinese Academy of Sciences。
文摘The contact characteristic between p-InP and metal plays an important role in InP-related optoelectronic and microelectronic device applications.We investigate the low-resistance Au/Pt/Ni and Au/Ni ohmic contacts to p-InP based on the solid phase regrowth principle.The lowest specific contact resistivity of Au(100 nm)/Pt(115 nm)/Ni(50 nm)can reach 2.64×10^(-6)Ω·cm^(2) after annealing at 380℃ for 1 min,while the contact characteristics of Au/Ni deteriorated after annealing from 340℃ to 480℃ for 1 min.The results of scanning electron microscopy,atomic force microscopy and x-ray photoelectron spectroscopy show that the Pt layer is an important factor in improving the contact characteristics.The Pt layer prevents the diffusion of In and Au,inhibits the formation of Au3In metal compounds,and prevents the deterioration of the ohmic contact.The metal structures and optimized annealing process is expected to be helpful for obtaining high-performance InP-related devices.