This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, a...This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, acute toxic ef-fects of rare earth yttrium on earthworms under the stress of ammonium sulfate were investigated with filter paper contact method. [Result] Under single stress of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=213.41 mg/L and LC50=322.63 mg/L, respectively. ② Under single stress of ammonium sul-fate, the semi-lethal concentration after 48 h and 24 h was LC50=13.89 g/L and LC50=15.05 g/L, respectively. ③ In combined treatment of low concentration (10 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal con-centration after 48 and 24 h was LC50=198.65 g/L and LC50=399.85 g/L, respective-ly; in combined treatment of middle concentration (14 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=167.3 mg/L and LC50=256.73 mg/L, respectively; in combined treatment of high concentration (20 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 h and 24 h was LC50=31.03 mg/L and LC50=127.65 mg/L, respectively. [Conclusion] Low concentration of ammonium sulfate could reduce the toxicity of rare earth yttrium to earthworms and produce certain antagonism against rare earth yttrium; middle concentration ammonium sulfate in-creased the toxicity of rare earth yttrium to earthworms and produced relatively sig-nificant synergistic effects; high concentration ammonium sulfate significantly in-creased the toxicity of rare earth yttrium to earthworms. Compared with ammonium sulfate, dead earthworms exposed to rare earth yttrium were more easily fractured, and living earthworms showed insensitive response to acupuncture.展开更多
[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Trit...[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.21067003,51364015)National High-Tech Research and Development Program of China(GrantNo.2012BAC11B07)+1 种基金Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)Science and Technology Project of the Education Department ofJiangxi Province~~
文摘This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, acute toxic ef-fects of rare earth yttrium on earthworms under the stress of ammonium sulfate were investigated with filter paper contact method. [Result] Under single stress of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=213.41 mg/L and LC50=322.63 mg/L, respectively. ② Under single stress of ammonium sul-fate, the semi-lethal concentration after 48 h and 24 h was LC50=13.89 g/L and LC50=15.05 g/L, respectively. ③ In combined treatment of low concentration (10 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal con-centration after 48 and 24 h was LC50=198.65 g/L and LC50=399.85 g/L, respective-ly; in combined treatment of middle concentration (14 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=167.3 mg/L and LC50=256.73 mg/L, respectively; in combined treatment of high concentration (20 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 h and 24 h was LC50=31.03 mg/L and LC50=127.65 mg/L, respectively. [Conclusion] Low concentration of ammonium sulfate could reduce the toxicity of rare earth yttrium to earthworms and produce certain antagonism against rare earth yttrium; middle concentration ammonium sulfate in-creased the toxicity of rare earth yttrium to earthworms and produced relatively sig-nificant synergistic effects; high concentration ammonium sulfate significantly in-creased the toxicity of rare earth yttrium to earthworms. Compared with ammonium sulfate, dead earthworms exposed to rare earth yttrium were more easily fractured, and living earthworms showed insensitive response to acupuncture.
基金Supported by the National Natural Science Foundation of China(21067003,51364015)the National High-Tech Research and Development Program of China(2012BAC11B07)the Jiangxi Natural Science Foundation(20114BAB203024)~~
文摘[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.