Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope...Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.展开更多
成员判定是疏散星团研究中最关键的一步,成员判定的好坏直接影响对星团基本参数的估计.首次利用数据挖掘技术中的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法对疏散星团NGC 6791和M67(NGC 2682)分别...成员判定是疏散星团研究中最关键的一步,成员判定的好坏直接影响对星团基本参数的估计.首次利用数据挖掘技术中的DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法对疏散星团NGC 6791和M67(NGC 2682)分别进行了成员判定,结果表明DBSCAN聚类算法能很有效地剔除场星污染.得到的NGC6791成员星的颜色-星等图上主序清晰并呈现明显的双重主序结构,这表明NGC 6791可能有更复杂的恒星形成与演化历史.对M67的分析表明出现了质量分层现象,并且星团的核心和外围两部分有明显的相对运动.对NGC 6791和M67的分析均表明DBSCAN聚类算法是一种有效的成员判定方法,有传统成员判定方法不具备的一些优点.展开更多
基金supported by the Key Project of Natural Science Foundation of Ningxia(NZ13010)the National Natural Science Foundation of China(21366025)~~
文摘Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.