We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide t...We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.展开更多
基金partly funded by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2021MA091 and ZR2018MA044)Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province (Research and Innovation Team on Materials Modification and Optoelectronic Devices at extreme conditions)。
文摘We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.