Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatin...Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly.展开更多
Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coa...Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coating and improves the mechanical properties. The microhardness is increased by approximately two times simply by adding a small amount of Bi electrolyte into a Zn bath solution. A lower volume loss of the Zn-Bi composite coating compared with the pure Zn coating also indicates that the Zn-Bi coating has a better wear resistance.展开更多
基金Bright Sparks Unit,University Malaya for the financial support
文摘Electroplating has been used to produce Cu-Bi coatings. The crystal structure and lattice parameters of Cu in Cu-Bi composite coating were measured and compared with Cu coating. The mechanical properties of the coatings were also studied. It was found that the deposition parameters have significant effect on the mechanical properties of the Cu-Bi coatings. The microhardness has been improved from HVso165 of Cu coating to HVs0 250 of Cu-Bi composite coating prepared at 50 mA/cm2 for 20 min. Correspondingly, wear resistance of the Cu-Bi composite coating has also been enhanced significantly.
基金financial support from the Bright Spark Unit, University of Malaya
文摘Zn-Bi composite was synthesized by ionic co-discharge deposition and its properties were investigated. The results show that the Zn-Bi composite with the incorporation of Bi has a finer grain size than the pure Zn coating and improves the mechanical properties. The microhardness is increased by approximately two times simply by adding a small amount of Bi electrolyte into a Zn bath solution. A lower volume loss of the Zn-Bi composite coating compared with the pure Zn coating also indicates that the Zn-Bi coating has a better wear resistance.