耦联水生光合作用的碳酸盐风化碳汇是全球碳循环的重要组成部分,而生物碳泵效应是稳定碳酸盐风化碳汇的关键机制.河流筑坝后,生物碳泵效应的变化、控制因素及对水化学影响的研究甚少.本研究对2个喀斯特筑坝河流平寨水库和红枫湖进行系...耦联水生光合作用的碳酸盐风化碳汇是全球碳循环的重要组成部分,而生物碳泵效应是稳定碳酸盐风化碳汇的关键机制.河流筑坝后,生物碳泵效应的变化、控制因素及对水化学影响的研究甚少.本研究对2个喀斯特筑坝河流平寨水库和红枫湖进行系统采样,以研究河流筑坝后生物碳泵效应的变化、控制因素及对水化学的影响.研究结果表明,入库河流的水化学变化不明显,而2个水库的水化学则表现出显著的季节变化特征,具体表现为水库的水温和pH均呈现出夏季高、冬季低的变化特征,而电导率(EC)、HCO-3浓度和p CO 2则表现出夏季低、冬季高的季节变化特征.以叶绿素a(Chl.a)浓度和溶解氧(DO)饱和度指代的生物碳泵效应则是在夏季最强、冬季最弱.生物碳泵效应利用溶解性无机碳(DIC),形成有机质并释放出氧气,是造成夏季水库pH值和DO饱和度升高,电导率(EC)、HCO-3浓度和p CO 2降低的主要因素.空间上,水库的Chl.a浓度及DO饱和度均大于河水,EC、HCO-3浓度和p CO 2均小于河水,这表明河流筑坝后,由于水库的“湖泊化”导致水库的生物碳泵效应显著提高.通过对Chl.a与碳、氮和磷浓度及化学计量比的相关性分析发现,平寨水库和红枫湖的生物碳泵效应受到碳施肥的影响.平寨水库和红枫湖水库生物碳泵效应碳施肥机制的发现,表明在喀斯特地区,生物碳泵效应不仅受到氮磷元素的控制,也受到碳元素的控制,因此在富营养化湖泊治理时,也应考虑碳的影响.展开更多
针对在硫排放限制和碳减排背景下的集装箱班轮航线配船问题,建立以集装箱班轮船队运营成本与碳排放成本之和最小为目标的非线性规划模型,将船舶分配、使用合规低硫燃油和安装闭式脱硫装置的硫减排措施选择、硫排放控制区(sulphur emissi...针对在硫排放限制和碳减排背景下的集装箱班轮航线配船问题,建立以集装箱班轮船队运营成本与碳排放成本之和最小为目标的非线性规划模型,将船舶分配、使用合规低硫燃油和安装闭式脱硫装置的硫减排措施选择、硫排放控制区(sulphur emission control area,SECA)内外的航速作为决策变量,利用遗传算法求解,得到最优配船方案。对油价差和碳税税率进行敏感性分析。选用某公司3条经过SECA的航线进行算例分析,验证模型和算法的有效性。研究内容可帮助船公司节能减排,降低运营成本。展开更多
文摘耦联水生光合作用的碳酸盐风化碳汇是全球碳循环的重要组成部分,而生物碳泵效应是稳定碳酸盐风化碳汇的关键机制.河流筑坝后,生物碳泵效应的变化、控制因素及对水化学影响的研究甚少.本研究对2个喀斯特筑坝河流平寨水库和红枫湖进行系统采样,以研究河流筑坝后生物碳泵效应的变化、控制因素及对水化学的影响.研究结果表明,入库河流的水化学变化不明显,而2个水库的水化学则表现出显著的季节变化特征,具体表现为水库的水温和pH均呈现出夏季高、冬季低的变化特征,而电导率(EC)、HCO-3浓度和p CO 2则表现出夏季低、冬季高的季节变化特征.以叶绿素a(Chl.a)浓度和溶解氧(DO)饱和度指代的生物碳泵效应则是在夏季最强、冬季最弱.生物碳泵效应利用溶解性无机碳(DIC),形成有机质并释放出氧气,是造成夏季水库pH值和DO饱和度升高,电导率(EC)、HCO-3浓度和p CO 2降低的主要因素.空间上,水库的Chl.a浓度及DO饱和度均大于河水,EC、HCO-3浓度和p CO 2均小于河水,这表明河流筑坝后,由于水库的“湖泊化”导致水库的生物碳泵效应显著提高.通过对Chl.a与碳、氮和磷浓度及化学计量比的相关性分析发现,平寨水库和红枫湖的生物碳泵效应受到碳施肥的影响.平寨水库和红枫湖水库生物碳泵效应碳施肥机制的发现,表明在喀斯特地区,生物碳泵效应不仅受到氮磷元素的控制,也受到碳元素的控制,因此在富营养化湖泊治理时,也应考虑碳的影响.
文摘针对在硫排放限制和碳减排背景下的集装箱班轮航线配船问题,建立以集装箱班轮船队运营成本与碳排放成本之和最小为目标的非线性规划模型,将船舶分配、使用合规低硫燃油和安装闭式脱硫装置的硫减排措施选择、硫排放控制区(sulphur emission control area,SECA)内外的航速作为决策变量,利用遗传算法求解,得到最优配船方案。对油价差和碳税税率进行敏感性分析。选用某公司3条经过SECA的航线进行算例分析,验证模型和算法的有效性。研究内容可帮助船公司节能减排,降低运营成本。