The co-doping of iron and cerium into TiO2 was studied by means of X-ray diffraction, Raman spectroscopy, UV Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, when separately doping via the so...The co-doping of iron and cerium into TiO2 was studied by means of X-ray diffraction, Raman spectroscopy, UV Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, when separately doping via the sol-gel method, iron was introduced in the fralnework of anatase TiO2 whereas cerium was not; interestingly, both iron and cerium were introduced in tile framework when co-doping by the sol-gel method. The co-doped TiO2 behaves much more intense surface hydroxyl concentration than the separately-doped and pure TiO2. This observation demonstrates for the first time a cooperative effect in the co-doping of transitional metals in the framework of TiO2.展开更多
基金The project was supported by the National Key Basic Research Program of China(973)(2013CB933104)National Natural Science Foundation of China(21525313,20973161,21373192)+1 种基金MOE Fundamental Research Funds for the Central Universities,China(WK2060030017)MPG-CAS Partner Group Program and Collaborative Innovation Center of Suzhou Nano Science and Technology~~
文摘The co-doping of iron and cerium into TiO2 was studied by means of X-ray diffraction, Raman spectroscopy, UV Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy, when separately doping via the sol-gel method, iron was introduced in the fralnework of anatase TiO2 whereas cerium was not; interestingly, both iron and cerium were introduced in tile framework when co-doping by the sol-gel method. The co-doped TiO2 behaves much more intense surface hydroxyl concentration than the separately-doped and pure TiO2. This observation demonstrates for the first time a cooperative effect in the co-doping of transitional metals in the framework of TiO2.