[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was ...[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.展开更多
基金Supported by the Guangdong Technological Program (2009B02001002)the Special Funds of National Agricultural Department for Commonweal Trade Research (nyhyzx07-019)the Earmarked Fund for Modern Agro-industry Technology Research System~~
文摘[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.