Optically generated 20-GHz microwave carriers with phase noise lower than -75 dBc/Hz at 10 kHz offset and lower than -90 dBc/Hz at 100 kHz offset are obtained using single- and double-sideband injection locking. Withi...Optically generated 20-GHz microwave carriers with phase noise lower than -75 dBc/Hz at 10 kHz offset and lower than -90 dBc/Hz at 100 kHz offset are obtained using single- and double-sideband injection locking. Within the locking range, the effect of sideband injection locking can be regarded as narrow-band amplification of the modulation sidebands. Increasing the current of slave laser will increase the power of beat signal and reduce the phase noise to a certain extent. Double-sideband injection locking can increase the power of the generated microwave carrier while keeping the phase noise at a low level. It is also revealed that partially destruction of coherence between the two beating lights in the course of sideband injection locking would impair the phase noise performance.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 60536020 and 50706022, the Major State Basic Research Project of China under Grant Nos 2006CB302800 and 2006CB921106, the High-Technology Research and Development Programme of China under Grant Nos 2006AA03A105 and 2007AA05Z429.
文摘Optically generated 20-GHz microwave carriers with phase noise lower than -75 dBc/Hz at 10 kHz offset and lower than -90 dBc/Hz at 100 kHz offset are obtained using single- and double-sideband injection locking. Within the locking range, the effect of sideband injection locking can be regarded as narrow-band amplification of the modulation sidebands. Increasing the current of slave laser will increase the power of beat signal and reduce the phase noise to a certain extent. Double-sideband injection locking can increase the power of the generated microwave carrier while keeping the phase noise at a low level. It is also revealed that partially destruction of coherence between the two beating lights in the course of sideband injection locking would impair the phase noise performance.