By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constra...By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.展开更多
The small size of miniature robots poses great challenges for the mechanical and electrical design and the implementation of autonomous capabilities. In this paper, the mechanical and electrical design for a twowheele...The small size of miniature robots poses great challenges for the mechanical and electrical design and the implementation of autonomous capabilities. In this paper, the mechanical and electrical design for a twowheeled cylindrical miniature autonomous robot ("BMS-1", BIT MicroScout-1) is presented and some autonomous capabilities are implemented by multiple sensors and some arithmetic models. Several experimental results show that BMS-1 is useful for surveillance in confined spaces and suitable for large-scale surveillance due to some autonomous capabilities.展开更多
文摘By redefining the multiplier associated with inequality constraint as a positive definite function of the originally-defined multiplier, say, u2_i, i=1, 2, ..., m, nonnegative constraints imposed on inequality constraints in Karush-Kuhn-Tucker necessary conditions are removed. For constructing the Lagrange neural network and Lagrange multiplier method, it is no longer necessary to convert inequality constraints into equality constraints by slack variables in order to reuse those results dedicated to equality constraints, and they can be similarly proved with minor modification. Utilizing this technique, a new type of Lagrange neural network and a new type of Lagrange multiplier method are devised, which both handle inequality constraints directly. Also, their stability and convergence are analyzed rigorously.
基金Sponsored by the National"863" Program Project (2005AA4202304) "115" Program(20060229112)
文摘The small size of miniature robots poses great challenges for the mechanical and electrical design and the implementation of autonomous capabilities. In this paper, the mechanical and electrical design for a twowheeled cylindrical miniature autonomous robot ("BMS-1", BIT MicroScout-1) is presented and some autonomous capabilities are implemented by multiple sensors and some arithmetic models. Several experimental results show that BMS-1 is useful for surveillance in confined spaces and suitable for large-scale surveillance due to some autonomous capabilities.