The electrochemical preparaton of Al-Li-Y alloys from LiCl-KCl-AlCl3-Y2O3 system was studied. The chlorination of Y2O3 by AlCl3 led to the formation of Y (III) ions in the molten salts. Cyclic voltammogram (CV) sh...The electrochemical preparaton of Al-Li-Y alloys from LiCl-KCl-AlCl3-Y2O3 system was studied. The chlorination of Y2O3 by AlCl3 led to the formation of Y (III) ions in the molten salts. Cyclic voltammogram (CV) showed that the underpotential deposition (UPD) of yttrium on pre-deposited aluminum caused the formation of Al-Y alloy. Al-Li-Y alloys with different yttrium contents were obtained by galvanostatic electrolysis and analysed by SEM-EDS and ICP. The ICP results showed that the lithium and yttrium contents in Al-Li-Y alloys depended on the addition of AlCl3 into the melts.展开更多
基金supported by the National 863 Project of the Ministry of ScienceTechnology of China (2009AA050702)the National Natural Science Foundation of China (50871033)
文摘The electrochemical preparaton of Al-Li-Y alloys from LiCl-KCl-AlCl3-Y2O3 system was studied. The chlorination of Y2O3 by AlCl3 led to the formation of Y (III) ions in the molten salts. Cyclic voltammogram (CV) showed that the underpotential deposition (UPD) of yttrium on pre-deposited aluminum caused the formation of Al-Y alloy. Al-Li-Y alloys with different yttrium contents were obtained by galvanostatic electrolysis and analysed by SEM-EDS and ICP. The ICP results showed that the lithium and yttrium contents in Al-Li-Y alloys depended on the addition of AlCl3 into the melts.