为了将高维输入空间的数据映射到低维空间,利用可视化技术探测数据的固有特性,提出了用非线性主成分分析(NLPCA:NonLinear Principal Component Analysis)和自组织映射网络相结合的方法对生物信息学中基因表达数据进行聚类可视化分析。...为了将高维输入空间的数据映射到低维空间,利用可视化技术探测数据的固有特性,提出了用非线性主成分分析(NLPCA:NonLinear Principal Component Analysis)和自组织映射网络相结合的方法对生物信息学中基因表达数据进行聚类可视化分析。实验结果表明,该方法有较高的分类正确率,用于基因表达数据的聚类分析是行之有效的。展开更多
文摘为了将高维输入空间的数据映射到低维空间,利用可视化技术探测数据的固有特性,提出了用非线性主成分分析(NLPCA:NonLinear Principal Component Analysis)和自组织映射网络相结合的方法对生物信息学中基因表达数据进行聚类可视化分析。实验结果表明,该方法有较高的分类正确率,用于基因表达数据的聚类分析是行之有效的。