As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and l...As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.展开更多
Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements ...Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.展开更多
基金the National Natural Science Foundation of China (No. 10872128)
文摘As a force-based finite element method (FEM), large increment method (LIM) has been developed in recent years. It has been shown that LIM provided prominent advantage of parallel computation with high efficiency and low time consumption for member structural system. To fully utilize its advantage in parallel computation, it is the time to extend LIM to 2D and 3D continua analysis. In this paper, a 2D finite element library with the capability of modeling arbitrary configurations is developed. Some illustrative numerical examples are solved by using the proposed library; the obtained results are compared with those obtained from both traditional displacement-based FEM and analytical solutions, which has clearly shown the advantages of LIM.
基金the National Natural Science Foundation of China(No.10872128)
文摘Many displacement-based quadrilateral plate elements based on Mindlin-Reissner plate theory have been proposed to analyze the thin and moderately thick plate problems. However, numerical inaccuracies of some elements appear since the presence of shear locking and spurious zero energy modes for thin plate problems. To overcome these shortcomings, we employ the large increment method(LIM) for the analyses of the plate bending problems, and propose a force-based 8-node quadrilateral plate(8NQP) element which is based on MindlinReissner plate theory and has no extra spurious zero energy mode. Several benchmark plate bending problems are presented to illustrate the accuracy and convergence of the plate element by comparing with the analytical solutions and displacement-based plate elements. The results show that the 8-node plate element produces fast convergence and accurate stress distributions in both the moderately thick and thin plate bending problems. The plate element is insensitive to mesh distortion and it can avoid the shear locking for thin plate analysis.