目的/意义研发贴合急诊医学临床教学特点的病例模拟软件,并应用于医学生急诊临床实习教学,丰富急诊医学科等专科临床带教手段。方法/过程利用Visual Studio 2017平台开发软件并实现编辑病例与模拟训练两大核心功能,导入自主设计的急诊...目的/意义研发贴合急诊医学临床教学特点的病例模拟软件,并应用于医学生急诊临床实习教学,丰富急诊医学科等专科临床带教手段。方法/过程利用Visual Studio 2017平台开发软件并实现编辑病例与模拟训练两大核心功能,导入自主设计的急诊典型病例。将该软件应用于50名急诊实习医学生的教学实践,并通过问卷调查收集反馈意见。结果/结论学生对该软件的新颖性和整体效果表示认可,赞同将其用于急诊实习教学。软件的病史采集和体格检查功能有待提升。该病例模拟软件在急诊实习教学中应用前景广阔,值得进一步探索和推广。展开更多
少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learnin...少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learning of Graph Convolutional Network on Prototype Space).首先,利用卷积神经网络提取多任务数据的特征向量;其次,为了将特征向量映射到原型空间中,根据元学习的训练策略得到特征向量的类原型表达;然后,通过类原型向量和类向量之间的嵌入表示,构建图结构数据,并进行图卷积网络训练、推理.实验结果表明,相较于经典少样本学习方法,FSL-GCNPS模型拥有更好的分类准确率和分类稳定性.同时,在医学图像领域数据集上实验表明,FSL-GCNPS具有很好的跨域适应性.展开更多
结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分...结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分析算法框架(Text-guided Multi-modal Medical image analysis framework,TMM-Net).TMM-Net使用多阶段的诊断文本来引导模型学习,以提取图像中的关键诊断信息特征,然后通过交叉模态注意力机制促进多模态特征之间的交互.值得注意的是,TMM-Net通过预测病变属性来模拟临床诊断过程,从而增强了可解释性.验证实验在两个中心包含10 025个模态数据对的数据集上进行.结果表明,该方法相比目前最优的GISTs诊断方法精度提升7.7%,同时获得了最高的(Area Under the Curve,AUC)值:0.927,其可解释性可以更好地适合临床需求.展开更多
文摘目的/意义研发贴合急诊医学临床教学特点的病例模拟软件,并应用于医学生急诊临床实习教学,丰富急诊医学科等专科临床带教手段。方法/过程利用Visual Studio 2017平台开发软件并实现编辑病例与模拟训练两大核心功能,导入自主设计的急诊典型病例。将该软件应用于50名急诊实习医学生的教学实践,并通过问卷调查收集反馈意见。结果/结论学生对该软件的新颖性和整体效果表示认可,赞同将其用于急诊实习教学。软件的病史采集和体格检查功能有待提升。该病例模拟软件在急诊实习教学中应用前景广阔,值得进一步探索和推广。
文摘少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learning of Graph Convolutional Network on Prototype Space).首先,利用卷积神经网络提取多任务数据的特征向量;其次,为了将特征向量映射到原型空间中,根据元学习的训练策略得到特征向量的类原型表达;然后,通过类原型向量和类向量之间的嵌入表示,构建图结构数据,并进行图卷积网络训练、推理.实验结果表明,相较于经典少样本学习方法,FSL-GCNPS模型拥有更好的分类准确率和分类稳定性.同时,在医学图像领域数据集上实验表明,FSL-GCNPS具有很好的跨域适应性.
文摘结合胃镜超声和白光内镜可以更准确地识别胃肠道间质瘤.但是现有的多模态方法往往仅关注于图像特征,忽略了诊断文本信息中所包含的语义信息对于精确理解和诊断医学图像的重要性.为此,本文提出一种新的基于文本引导下的多模态医学图像分析算法框架(Text-guided Multi-modal Medical image analysis framework,TMM-Net).TMM-Net使用多阶段的诊断文本来引导模型学习,以提取图像中的关键诊断信息特征,然后通过交叉模态注意力机制促进多模态特征之间的交互.值得注意的是,TMM-Net通过预测病变属性来模拟临床诊断过程,从而增强了可解释性.验证实验在两个中心包含10 025个模态数据对的数据集上进行.结果表明,该方法相比目前最优的GISTs诊断方法精度提升7.7%,同时获得了最高的(Area Under the Curve,AUC)值:0.927,其可解释性可以更好地适合临床需求.