期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Deep Learning Based Autonomous Transport System for Secure Vehicle and Cargo Matching 被引量:1
1
作者 T.Shanthi M.Ramprasath +1 位作者 a.kavitha T.Muruganantham 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期957-969,共13页
The latest 6G improvements secured autonomous driving's realism in Intelligent Autonomous Transport Systems(IATS).Despite the IATS's benefits,security remains a significant challenge.Blockchain technology has ... The latest 6G improvements secured autonomous driving's realism in Intelligent Autonomous Transport Systems(IATS).Despite the IATS's benefits,security remains a significant challenge.Blockchain technology has grown in popularity as a means of implementing safe,dependable,and decentralised independent IATS systems,allowing for more utilisation of legacy IATS infrastructures and resources,which is especially advantageous for crowdsourcing technologies.Blockchain technology can be used to address security concerns in the IATS and to aid in logistics development.In light of the inadequacy of reliance and inattention to rights created by centralised and conventional logistics systems,this paper discusses the creation of a blockchain-based IATS powered by deep learning for secure cargo and vehicle matching(BDL-IATS).The BDL-IATS approach utilises Ethereum as the primary blockchain for storing private data such as order and shipment details.Additionally,the deep belief network(DBN)model is used to select suitable vehicles and goods for transportation.Additionally,the chaotic krill herd technique is used to tune the DBN model’s hyper-parameters.The performance of the BDL-IATS technique is validated,and the findings are inspected under a variety of conditions.The simulationfindings indicated that the BDL-IATS strategy outperformed recent state-of-the-art approaches. 展开更多
关键词 Blockchain ethereum intelligent autonomous transport system security deep belief network
下载PDF
Deep LearningModel for Big Data Classification in Apache Spark Environment
2
作者 T.M.Nithya R.Umanesan +2 位作者 T.Kalavathidevi C.Selvarathi a.kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2537-2547,共11页
Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better p... Big data analytics is a popular research topic due to its applicability in various real time applications.The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance.Since big data involves numerous features and necessitates high computational time,feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance.This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit(SBOA-OGRU)model for big data classification in Apache Spark.The SBOA-OGRU technique involves the design of SBOA based feature selection technique to choose an optimum subset of features.In addition,OGRU based classification model is employed to classify the big data into appropriate classes.Besides,the hyperparameter tuning of the GRU model takes place using Adam optimizer.Furthermore,the Apache Spark platform is applied for processing big data in an effective way.In order to ensure the betterment of the SBOA-OGRU technique,a wide range of experiments were performed and the experimental results highlighted the supremacy of the SBOA-OGRU technique. 展开更多
关键词 Big data apache spark classification feature selection gated recurrent unit adam optimizer
下载PDF
Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images
3
作者 P.S.Arthy a.kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1381-1393,共13页
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the... With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,thefinal stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models. 展开更多
关键词 Machine and deep learning algorithm capsule networks residual networks extreme learning machines correlation features
下载PDF
Deep Capsule Residual Networks for Better Diagnosis Rate in Medical Noisy Images
4
作者 P.S.Arthy a.kavitha 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2959-2971,共13页
With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the... With the advent of Machine and Deep Learning algorithms,medical image diagnosis has a new perception of diagnosis and clinical treatment.Regret-tably,medical images are more susceptible to capturing noises despite the peak in intelligent imaging techniques.However,the presence of noise images degrades both the diagnosis and clinical treatment processes.The existing intelligent meth-ods suffer from the deficiency in handling the diverse range of noise in the ver-satile medical images.This paper proposes a novel deep learning network which learns from the substantial extent of noise in medical data samples to alle-viate this challenge.The proposed deep learning architecture exploits the advan-tages of the capsule network,which is used to extract correlation features and combine them with redefined residual features.Additionally,the final stage of dense learning is replaced with powerful extreme learning machines to achieve a better diagnosis rate,even for noisy and complex images.Extensive experimen-tation has been conducted using different medical images.Various performances such as Peak-Signal-To-Noise Ratio(PSNR)and Structural-Similarity-Index-Metrics(SSIM)are compared with the existing deep learning architectures.Addi-tionally,a comprehensive analysis of individual algorithms is analyzed.The experimental results prove that the proposed model has outperformed the other existing algorithms by a substantial margin and proved its supremacy over the other learning models. 展开更多
关键词 Machine and deep learning algorithm capsule networks residual networks extreme learning machines correlation features
下载PDF
An Efficient On-Demand Virtual Machine Migration in Cloud Using Common Deployment Model
5
作者 C.Saravanakumar R.Priscilla +3 位作者 B.Prabha a.kavitha M.Prakash C.Arun 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期245-256,共12页
Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.Thes... Cloud Computing provides various services to the customer in aflex-ible and reliable manner.Virtual Machines(VM)are created from physical resources of the data center for handling huge number of requests as a task.These tasks are executed in the VM at the data center which needs excess hosts for satis-fying the customer request.The VM migration solves this problem by migrating the VM from one host to another host and makes the resources available at any time.This process is carried out based on various algorithms which follow a pre-defined capacity of source VM leads to the capacity issue at the destination VM.The proposed VM migration technique performs the migration process based on the request of the requesting host machine.This technique can perform in three ways namely single VM migration,Multiple VM migration and Cluster VM migration.Common Deployment Manager(CDM)is used to support through negotiation that happens across the source host and destination host for providing the high quality service to their customer.The VM migration requests are handled with an exposure of the source host capabilities.The proposed analysis also uses the retired instructions with execution by the hypervisor to achieve high reliabil-ity.The objective of the proposed technique is to perform a VM migration process based on the prior knowledge of the resource availability in the target VM. 展开更多
关键词 Cloud computing VIRTUALIZATION HYPERVISOR VMmigration virtual machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部